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Abstract 

Quantum computing is a promising technology that can potentially demonstrate supremacy 

over classical computing in solving specific classically-intractable problems. However, in its 

current nascent stage, quantum computing faces major challenges. Two of the main challenges are 

quantum state decoherence and low scalability of current quantum devices. Decoherence is a 

process in which the state of the quantum computer is destroyed by interaction with the 

environment. Decoherence places constraints on the realistic applicability of quantum algorithms 

as real-life applications usually require complex equivalent quantum circuits to be realized. For 

example, encoding classical data on quantum computers for solving I/O and data-intensive 

applications generally requires complex quantum circuits that violate decoherence constraints. In 

addition, current quantum devices are of intermediate scale, having low quantum bit (qubit) counts 

and often producing inaccurate or noisy measurements. Consequently, benchmarking of existing 

quantum algorithms and the investigation of new applications are heavily dependent on classical 

simulations that use costly, resource-intensive computing platforms. Hardware-based emulation 

has been alternatively proposed as a more cost-effective and power-efficient approach. Hardware-

based emulation methods can take advantage of hardware parallelism and acceleration to produce 

results at a higher throughput and lower power requirements. 

This work proposes a hardware-based emulation methodology for quantum algorithms, using 

cost-effective Field Programmable Gate Array (FPGA) technology. The proposed methodology 

consists of three components that are required for complete emulation of quantum algorithms; the 

first component models classical-to-quantum (C2Q) data encoding, the second emulates the 

behavior of quantum algorithms, and the third models the process of measuring the quantum state 

and extracting classical information, i.e., quantum-to-classical (Q2C) data decoding. The proposed 
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emulation methodology is used to investigate and optimize methods for C2Q/Q2C data 

encoding/decoding, as well as several important quantum algorithms such as Quantum Fourier 

Transform (QFT), Quantum Haar Transform (QHT), and Quantum Grover’s Search (QGS). This 

work delivers contributions in terms of reducing complexities of quantum circuits, extending and 

optimizing quantum algorithms, and developing new quantum applications. For example, 

decoherence-optimized circuits for C2Q/Q2C data encoding/decoding are proposed and evaluated 

using the proposed emulation methodology. Multi-level decomposable forms of optimized QHT 

circuits are presented and used to demonstrate dimension reduction of high-resolution data. 

Additionally, a novel extension to the QGS algorithm is proposed to enable search for dynamically 

changing multi-patterns of unordered data. Finally, a novel quantum application is presented that 

combines QHT and dynamic multi-pattern QGS to perform pattern recognition using dimension 

reduction on high-resolution spatio-spectral data. For higher emulation performance and 

scalability of the framework, hardware design techniques and hardware architectural optimizations 

are investigated and proposed. The emulation architectures are designed and implemented on a 

high-performance reconfigurable computer (HPRC). For reference and comparison, 

implementations of the proposed quantum circuits are also performed on a state-of-the-art quantum 

computer. Experimental results show that the proposed hardware architectures enable emulation 

of quantum algorithms with higher scalability, higher accuracy, and higher throughput, compared 

to existing hardware-based emulators. As a case study, quantum image processing using multi-

spectral images is considered for the experimental evaluations. The analysis and results of this 

work demonstrate that quantum computers and methodologies based on quantum algorithms will 

be highly useful in realistic data-intensive domains such as remote-sensing hyperspectral imagery 

and high-energy physics (HEP). 
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Chapter 1: Introduction 

Quantum computing is one of the promising technologies of today, but it is still in its nascent 

development stage. The initial idea of a quantum computer was put forward by Benioff in 1980 

[1], who theorized a quantum mechanical model for computing represented by Turing machines. 

This was followed by significant contributions from Feynman who proposed simulating quantum 

physics using a universal computing machine [2], and Deutsch who extended theories on quantum 

computers and linked quantum physics with computing [3]. Later during the 90s, the introduction 

of quantum algorithms for integer factoring and discrete logarithms by Shor [4], and a quantum 

algorithm for database search by Grover [5] generated immense interest and triggered research and 

development efforts towards quantum computers. 

1.1 Prospect of Quantum Computing 

At present, quantum technology is developing rapidly and promises an exciting future for 

computing. The current state-of-the-art quantum computers are capable of processing hundreds of 

quantum bits (qubits) and are termed as Noisy Intermediate-Scale Quantum (NISQ) devices. 

Research is being conducted heavily to mitigate the noise in these systems, in order to achieve 

fully fault-tolerant computation. It is estimated [6] that a quantum computer should be able to 

process thousands of qubits, including error-correcting qubits, in order to achieve or exceed the 

level of performance of existing classical systems. The event that quantum computers can 

outperform classical machines has been termed as ‘quantum supremacy’ [7]. A research team led 

by Google [8] has claimed experimental demonstration of quantum supremacy using their 53-qubit 

Sycamore quantum processor [8]. They showed that Sycamore takes roughly 200 seconds to 

sample a quantum circuit a million times, while the state-of-the-art classical supercomputer would 

take thousands of years to complete an equivalent task. This demonstration greatly improves the 
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prospects for quantum computing. In particular, the ability of a quantum computer to solve NP-

hard problems  [4] [5] [3] [9] which are classically intractable, is of great significance and interest. 

For example, a quantum computer using Shor’s algorithm [4] could potentially solve large integer 

factorization in polynomial time. Thus, existing security schemes such as Rivest Shamir-Adleman 

(RSA), which are widely used in state-of-the-art cryptosystems, would be severely compromised 

since these security schemes assume that factoring of large integers is intractable in polynomial 

time. Another quantum algorithm of great interest is Grover’s search algorithm [5]. Grover’s 

search can be used to find a specific item in an unordered list of 𝑁𝑁 items in 𝑂𝑂(√𝑁𝑁) time, achieving 

quadratic speedup over the best classical search algorithms. There are also potential applications 

of quantum computers in simulation of quantum systems in chemistry [10] and quantum mechanics 

[2]. Another feasible application of quantum computers is in the field of image processing. Images 

encoded in the quantum domain can be processed using quantum algorithms such as Quantum 

Wavelet Transform (QWT)  and Quantum Fourier Transform (QFT) [11] with greater time and/or 

space efficiency compared to classical methods. The prospect of quantum computing is well 

recognized by big technology companies such as IBM, Google, Intel, and Microsoft [12], as well 

as new startups such as IonQ and Rigetti [12], and each is investing heavily in research and 

development of quantum computing hardware and software.  

1.2 Challenges and Motivation 

Despite many companies having operational quantum hardware, the implementation of 

realistic quantum algorithms and their equivalent circuits on quantum computing architectures is 

extremely challenging. Quantum computers are highly sensitive to external environmental noise 

and quantum hardware must be isolated and maintained in cryogenic temperatures. The process 

by which the environment affects the state of a quantum computer is called quantum state 
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decoherence [11][13]. Interactions with the environment cause information to be lost and the 

quantum state to collapse, i.e., lose its quantum mechanical properties. Decoherence is a 

fundamental constraint for practical implementation of quantum circuits on quantum computers 

[13]. A quantum circuit is generally modeled two-dimensionally, with the y-dimension (width) 

representing qubits, and the x-dimension (depth) representing the levels of quantum 

transformations or the circuit time-steps. The depth determines the execution time of the quantum 

circuit, i.e., higher the depth, higher the circuit execution time. A quantum circuit must complete 

execution within a constrained time frame before decoherence causes the state to collapse. 

Therefore the depth of the circuit that can be implemented on a quantum computer is also limited. 

For any quantum computing system, the decoherence time constraints are termed as T1 and T2 

times [14] [15] and are determined by the quality of the underlying quantum technology. T1 is the 

time taken for natural relaxation of the qubit to its ground state, while T2 is the time taken for the 

qubit to get affected by environmental noise [15]. To mitigate the decoherence problem, methods 

need to be investigated at the quantum device level to achieve higher T1 and T2 times. It is also 

necessary to optimize quantum circuits to reduce depth, such that circuit execution times are less 

than the system decoherence times.  

Another critical challenge that arises because of decoherence time constraints is encoding 

classical data onto the quantum computer, or classical-to-quantum (C2Q) data encoding [16]. A 

quantum algorithm is a sequence of transformations on an initial quantum state, resulting in an 

output quantum state. C2Q is the process of encoding classical data required by the algorithm onto 

the initial quantum state. A state-preparation circuit is required to perform C2Q data encoding, in 

addition to the circuit performing the quantum algorithm operations. For I/O intensive 

applications, C2Q data encoding is problematic as the state-preparation circuit execution often 
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exceeds the decoherence time constraints of the system. The data encoding time becomes large 

compared to the algorithm compute time, thus nullifying any computational benefits of the 

algorithm alone, and having an adverse effect on overall system performance. 

Measuring/observing the output of a quantum circuit and extracting useful classical data from the 

output quantum state, or quantum-to-classical (Q2C) data decoding, is also another challenge [16]. 

Measurement/observation of any quantum state destroys the properties of that state, thereby data 

encoded in that state is lost. To recover useful data about the output quantum state, the quantum 

circuit is ‘sampled’ repeatedly, i.e., the circuit is executed multiple times and the output is 

measured each time. Performing multiple circuit executions deteriorates the overall system time 

complexity. The C2Q and Q2C processes are integral when benchmarking the performance of any 

quantum system and/or algorithm. Improving only the computation component of any quantum 

algorithm will not be sufficient if C2Q and Q2C components remain performance bottlenecks. 

Therefore, it is vital to investigate time-efficient and decoherence-optimized quantum circuits for 

C2Q and Q2C processes, along with improving and optimizing circuits for quantum algorithms. 

The current state-of-the-art quantum computers are of intermediate scale, i.e., they have low 

number of qubits relative to the actual number of qubits required to encode realistic problems. 

Scaling up quantum systems is extremely challenging as it is difficult to maintain full physical 

connectivity between the qubits. Moreover, the required addition of error-correcting qubits for 

reducing errors make quantum systems less scalable. Building a quantum hardware and software 

system is expensive too [17]. Consequently, it is very costly for users to gain access to these 

systems. Researchers and students can have either limited access to these systems, or are limited 

to only the small-scale systems with low qubit counts. The low scalability and noisy nature of 

current NISQ-era quantum devices, as well as cost of access hinders research and slows the growth 
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of quantum computing knowledge. Efforts into simulation and emulation of quantum computers 

have emerged consequently, to help researchers validate existing algorithms as well as evaluate 

newer quantum algorithms. There exists a plethora of quantum simulators which require costly, 

resource-intensive, and power-hungry supercomputing platforms to run quantum algorithms. 

Therefore, there is a need for more cost-effective, resource-efficient, and power-efficient 

simulators. Another class of simulators for quantum algorithms being developed are hardware-

based emulators. Hardware-based emulation methods can take advantage of hardware parallelism 

and acceleration to produce results at a higher throughput. Most hardware-based emulators are 

based on reconfigurable hardware such as Field-Programmable Gate Arrays  (FPGAs) and 

therefore are more cost-effective and power-efficient. However, current FPGA-based emulators 

have low scalability,  low accuracy, and low throughput. They can emulate only a small number 

of qubits, use low-precision, and have low operating frequencies. Further investigation is needed 

for performing scalable, high-precision, and high-throughput hardware-based emulation of 

quantum algorithms. 

1.3 Problem Statement 

We identify that implementation of deep quantum circuits is a critical problem for current class 

of quantum computers. Quantum circuit execution constraints put in place due to decoherence 

make it difficult to efficiently perform classical-to-quantum (C2Q) data encoding, and quantum-

to-classical (Q2C) decoding in quantum systems. For I/O-intensive applications such as image 

processing, it becomes impossible to transfer large amounts of data to/from the quantum computer. 

As a result, investigation of I/O-intensive real-life applications on quantum computers is hindered. 

In addition, current quantum computing systems have problems such as low qubit counts, noisy 

low-fidelity outputs, and high cost of access. In this regard, there is a critical need for cost-
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effective, power-efficient simulation/emulation platforms for verification and benchmarking 

quantum algorithms. Existing simulators are generally based on costly supercomputing platforms 

that consume a lot of resources and power. Alternatively, hardware-accelerated emulation is more 

cost-effective, but existing hardware-based emulators face challenges such as low scalability, low 

accuracy, and low throughput.  

1.4 Research Goals and Approaches 

1.4.1 Overview  

 

Fig. 1: Overview of the proposed emulation system. 

According to DiVincenzo’s criteria [18], a quantum computing system has the following 

features: (a) a well characterized unit of storing information, i.e., a quantum ‘bit’ or qubit, (b) 

ability to initialize/prepare the state of the qubits, (c) long decoherence times, (d) a universal set 

of quantum gates, and (e) the ability to measure the final state of the quantum bits. The operation 

of a quantum computing system has the following cycle: prepare input state, apply 

transformations, and measure output state [16]. In this work, the primary research goals are to 

perform realistic and complete emulation of such a quantum computing system [18], and to 

evaluate quantum algorithms and quantum applications by emulation. The proposed approach for 

emulation consists of three components, a C2Q data encoding model for state preparation and 

initialization, a quantum algorithm emulator model for emulating quantum gates and algorithmic 
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computations, and a Q2C data decoding model for measuring quantum output state, as shown in 

Fig. 1. The C2Q model emulates the process of state synthesis, i.e. encoding classical data onto a 

state in the quantum domain. Our goal is to improve the C2Q process by developing faster data 

encoding methods. We will investigate and propose space and time-efficient methods and efficient 

quantum circuits for state-preparation and C2Q data encoding. Corresponding emulation 

architectures for evaluating C2Q will also be presented. For emulating algorithms, a hardware-

based quantum algorithm emulator will be developed. We will propose and investigate different 

emulation models for the quantum algorithm emulator, for investigating a variety of quantum 

algorithms. We will discuss advantages and disadvantages of each model and the type of quantum 

algorithm they are most suitable for. Different hardware design techniques and trade-offs will be 

investigated for improving the performance and efficiency of the models and the emulator. A 

variety of quantum algorithms will be investigated, including Quantum Fourier Transform (QFT), 

Quantum Wavelet (Haar) Transform (QHT), and Quantum Grover’s Search (QGS). The Q2C 

model, see Fig. 1, measures the output state of the algorithm, and extracts useful classical 

information about the output quantum state. For the Q2C model two methods will be investigated. 

In these methods, QFT and optimized QHT circuits will be utilized respectively to improve the 

time complexity of the Q2C process.  

1.4.2 Classical-to-Quantum Data Encoding 

Initially, a survey and analysis of the existing methods for C2Q data encoding will be 

performed. Our goal is to develop decoherence-optimized methods and circuits for C2Q and verify 

their functionality and feasibility by emulation. A quantitative comparison of our proposed 

methods with existing methods will also be provided. The process of synthesizing a quantum state 

is called arbitrary state synthesis in the literature [19], and the circuit required is called state-
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preparation and/or state-initialization circuit. Our aim is to investigate and develop state-

preparation circuits that have low spatial and temporal complexities, i.e., low gate count and low 

circuit depth. For circuit synthesis generally recursive circuit methods have been proposed that 

assume unity global scale and phase of qubits, and which result in large gate counts and circuit 

depth. In our approach we use, instead, quantum multiplexor circuits that result in lower spatial 

and temporal complexities. We then apply efficient decompositions to the multiplexor operations 

and analyze the final circuit depth and gate count. We propose two methods for C2Q: Method 1, 

which includes the global scale and phase of qubits, and Method 2, in which the global scale is 

unity. Analysis of the corresponding circuit depths for both proposed methods will be performed 

and compared to existing methods. 

1.4.3 Emulation of Quantum Algorithms  

At present there is a lot of work being done on large-scale simulation of quantum computers  

[6] [20] [21] [22] [23] [24]. Quantum computing simulators are generally run on costly and 

resource-intensive hardware platforms. On the other hand, FPGA-based hardware emulators have 

shown that quantum circuits can be emulated at lower costs [25] [26] [27] [28] [29] [30], but lack 

scalability, and have low accuracy and throughput. In this work, we aim to develop FPGA-based 

emulation methods for quantum computing that are highly scalable, maintain the inherent 

parallelism of quantum algorithms, maintain a high-level of accuracy and high-level of throughput. 

The goal of this effort is to develop a methodology/framework that is flexible for investigating a 

variety of quantum algorithms such as QFT, QHT, and QGS. The emulation framework will be 

utilized to extend algorithms with newer capabilities, optimize algorithms, and combine algorithms 

to develop new applications. For example, we will present the hardware architecture to 

dynamically generate the transformation matrix of QFT during emulation. Quantum circuit 
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generalization and optimizations will be investigated for QHT for multi-dimensional data 

processing. The circuits will also be extended for multi-level decomposable, multi-dimensional 

QHT operations and optimizations will be applied to reduce circuit depth. Using the emulation 

framework, we will also extend the conventional QGS circuit from static, single-pattern searching 

to dynamic, multiple-pattern data search. Finally, a methodology for dimension reduction of 

spatio-spectral data using multi-level decomposable, multi-dimensional QHT and pattern 

matching using dynamic, multi-pattern QGS will be investigated and evaluated using the 

emulation framework. The feasibility and usability of this methodology will be demonstrated 

experimentally by a quantum image processing application. The proposed emulation framework 

will use 32-bit floating point precision for higher accuracy, and a fully pipelined hardware 

architecture for highest throughput. Emulation techniques based on complex multiply-and-

accumulation and kernel operations will be analyzed, and different methods of computation such 

as lookup, dynamic generation, and streaming will also be investigated. Architectural 

optimizations and area / speed trade-offs for these methods will also be explored for improving 

the space and/or space-time complexities of the emulation. 

1.4.4 Quantum-to-Classical Data Decoding  

Measuring or observing the output state of a quantum circuit results in a non-deterministic 

outcome [16]. To decode meaningful classical data from the output of a quantum circuit, the 

general approach involves sampling the quantum circuit multiple times, and counting the 

frequencies of the different outcomes. The outcome frequencies are then used to construct a 

probability distribution with probability set {𝑃𝑃𝑖𝑖}, in which the set {�𝑃𝑃𝑖𝑖
2 } represent the output of the 

quantum circuit. In this approach, there is significant overhead due to the repeated sampling of the 

circuit. Another approach for Q2C data decoding, based on using the QFT, was proposed in [16]. 



10 
 

However, the QFT-based approach is specific to image processing applications, and no 

experimental evaluation was provided. In this work, we propose and evaluate a novel Q2C data 

decoding method, based on using the QHT algorithm. The QHT algorithm can be effectively used 

to reduce dimensionality of data while retaining both spatial and temporal locality, and thus 

reducing the number of qubits required to represent the data. Therefore, the proposed QHT-based 

approach will be effective in reducing the sampling overhead of the Q2C data decoding process. 

In this work, we will demonstrate multi-level decomposable, multi-dimensional QHT circuits for 

Q2C data decoding. Specifically, we will investigate the packet and pyramidal forms of 

decomposition for two-dimensional (2D) and three-dimensional (3D) QHT. We will use 

simulation on a quantum device to experimentally evaluate both the QFT and QHT based 

approaches. 
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Chapter 2: Background and Related Work 
 

2.1 Quantum Computing 

The general and commonly adapted model of quantum computation is the gate-model [11]. In 

this model, computation begins with the system set in an initial quantum state denoted as |𝜓𝜓𝑖𝑖𝑖𝑖⟩ in 

the bra-ket or Dirac notation [31]. Depending on the quantum algorithm, a sequence of unitary 

transformations comprised of gates, i.e., 0 1( , ,..., )MU U U , are applied to the input quantum state to 

reach a final output quantum state |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩, see (1).  

1 2 1...out m m inU U U Uψ ψ−= ⋅ ⋅ ⋅ ⋅ ⋅
 (1) 

2.1.1 Qubits, Superposition, and Entanglement 
 

The quantum bit or qubit is the smallest unit of quantum information [11]. A single qubit can 

exist in superposition of two basis states, |0⟩ and|1⟩, which can be represented by a Bloch sphere 

[11] as shown in Fig. 2. The north pole of the Bloch sphere represents the basis state |0⟩ while the 

south pole represents the basis state |1⟩. Any other point on the surface of the sphere is a valid 

pure state or superimposed state of the two basis states, denoted as |𝜓𝜓⟩. The overall state of the 

qubit is satisfied by the linear superposition equation, see (2), where 𝛼𝛼 and 𝛽𝛽 are complex 

coefficients, also termed as amplitudes, whose values depend on the azimuth and elevation angles 

ϕ and 𝜃𝜃, respectively, as shown in Fig. 2. Algebraically, the qubit can be represented by a column 

vector of the complex coefficients, see (2). When a qubit is measured, the superposition is lost, 

and the qubit will collapse to a basis state. According to the Born rule [11], the magnitudes of the 

complex coefficients/amplitudes, i.e., |𝛼𝛼|2 and |𝛽𝛽|2 represent the probabilities of measuring the 

qubit in corresponding |0⟩ and |1⟩ basis states, respectively.  
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Fig. 2: Bloch sphere representation of a qubit 

0 1
α

ψ α β
β
 

= + ≡  
 

   (2) 

Multiple qubits can form a quantum state. The state space represented by 𝑛𝑛 qubits is determined 

by the Kronecker product, denoted by ⨂, of the individual qubit vector spaces, see (3). The 𝑛𝑛-

qubit quantum state can also be described as a superposition of 2𝑖𝑖 = 𝑁𝑁 basis states, generally 

known as the computational basis [16], see (3), where 𝐶𝐶0,𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1 are the complex 

coefficients/amplitudes of the basis states. Algebraically, the 𝑛𝑛-qubit state can be represented by a 

column vector, termed as a state vector, comprising of the 𝑁𝑁 coefficients, see (3). An example of 

a 3-qubit quantum state is shown in (4), where 0 7...C C  are complex coefficients of the 

computational basis states ranging from |000⟩ to  |111⟩.  

|𝜓𝜓⟩⨂𝑖𝑖 = |𝑞𝑞𝑖𝑖−1⟩⨂|𝑞𝑞𝑖𝑖−1⟩⨂. .⨂|𝑞𝑞1⟩⨂|𝑞𝑞0⟩ = �𝐶𝐶𝑖𝑖

𝑁𝑁−1

𝑖𝑖=0

|𝑖𝑖⟩ = �

𝐶𝐶0
𝐶𝐶1
⋮

𝐶𝐶𝑁𝑁−1

� (3) 

|𝜓𝜓⟩⨂3 = 𝐶𝐶0|000⟩ + 𝐶𝐶1|001⟩ + ⋯+ 𝐶𝐶7|111⟩ (4) 
 

Entanglement is another distinguishing property of qubits [11]. Two or more qubits may 

become entangled meaning that each entangled qubit becomes strongly correlated to the other and 

the quantum state cannot be factored into a Kronecker product of the individual qubits, i.e., 
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1 2 1 0 1 2 1 0... ...n n n nq q q q q q q qψ − − − −= ≠ ⊗ ⊗ ⊗ . The benefit of quantum entanglement is that 

operations on one entangled qubit can affect other entangled qubits. Likewise, measuring an 

entangled qubit can give information about the state of other entangled qubits [16]. 

2.1.2 Quantum Gates 

In gate-model quantum computing, quantum gates are the set of unitary transformations on 

qubits and are analogous to classical logic gates [16]. Quantum gates are used to manipulate the 

states of qubits and are represented by N N×  unitary matrices where 2nN = and n is the number 

of qubits. In other words, a one-qubit gate is represented by a 2×2 unitary matrix, a two-qubit gate 

is represented by a unitary 4×4 unitary matrix, and so forth. Commonly used quantum gates like 

the Hadamard (H), SWAP, controlled NOT (CNOT), controlled phase shift gate (𝑅𝑅𝑘𝑘), controlled 

Pauli gates (cX,  cY, cZ), rotation gates (Rx, Ry, Rz) and multi-controlled gates are discussed in the 

next sections. The quantum gate symbols, and corresponding matrix representations are shown in 

Fig. 3.  

The Hadamard or H gate is an important single-qubit gate that creates a superposition of the 

basis states with equal coefficients [11]. An H gate applied on the ground basis state 0 puts the 

qubit to a resulting state with equal probability superposition between the 0 and 1 states, i.e., 

( )1 0 1
2

+ . A set of Pauli X, Y, and Z gates [16] exist that equate to rotations around the x, y, 

and z axes of the Bloch sphere  respectively. The Pauli X gate symbol and matrix are shown in 

Fig. 3. The SWAP gate is a two-qubit gate that simply exchanges the bit values provided as input 

[11].  
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Fig. 3: Quantum gates, gate symbols, and matrix representations. 

Any 1-qubit gate with matrix operation U can be extended to form a controlled U gate, see Fig. 

3, where U00, U01, U10, U11 are the elements of the 2x2 matrix representation of U. A multiple-

controlled gate can be formed by adding multiple number of qubits controlling the operation of a 

target qubit. The NOT gate is a single qubit gate that inverts the state of the qubit. A control qubit 

can be added to a NOT gate to create a two-qubit gate referred to as controlled-NOT or CNOT. 

When the control qubit is 1 then a NOT inversion will be applied to the other qubit, otherwise 

the other qubit remains unchanged. The CNOT gate and its corresponding matrix is shown in Fig. 

3. Control qubits can be added to the Pauli gates to create controlled Pauli gates cX,  cY, and cZ, 

which are used in many quantum algorithms. The operation of cX represents a rotation of 𝜋𝜋 around 

the x-axis and is synonymous with the CNOT gate. The cY gate represents a rotation of 𝜋𝜋 about 
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the y-axis of the Bloch sphere. The cZ gate is a rotation of 𝜋𝜋 about the z-axis, and its gate and 

matrix are shown in Fig. 3. 

There exists a specific class of rotation gates for performing arbitrary rotations about the x, y, 

and z axes of the Bloch sphere. These gates are important as they can be used to rotate a qubit into 

any arbitrary state from the ground state and vice-versa. Thus, any arbitrary 1-qubit gate can be 

decomposed into a sequence of rotation gates [16]. Additional control qubits can be added to the 

rotation gates to form controlled rotation gates (Rx, Ry, Rz) that have important usage in arbitrary 

state synthesis. The controlled phase shift gate, 𝑅𝑅𝑘𝑘 [11] is a similar 2-qubit gate that applies a phase 

shift ie φ  based on the control qubit, where 𝜙𝜙 = 2𝜋𝜋
2𝑘𝑘

 is the phase shift with period 2𝜋𝜋. The symbols 

and matrices for these rotation gates are shown in Fig. 3. 

2.2 Quantum Algorithms 

2.2.1 Quantum Fourier Transform 

Quantum Fourier Transform (QFT) is an integral part of many larger quantum algorithms such 

as Shor’s algorithm for integer factoring [11]. QFT is the quantum equivalent of the classical 

Discrete Fourier Transform (DFT). The input data samples for QFT are encoded as the basis state 

coefficients/amplitudes of a superimposed quantum state. When performed on a quantum 

computer, QFT can achieve exponential speedup over its classical counterpart. The mathematical 

model and quantum circuit for QFT can be determined from the classical DFT as demonstrated in 

[32]. The QFT algorithm transforms an arbitrary superposition of computational basis states to a 

corresponding superposition of Fourier basis states and is represented by (6a), where |𝜓𝜓⟩ is the 

quantum input state vector, and n is the number of qubits. The input signal samples are encoded 

as a normalized amplitude sequence given by (6b). A generalized n-qubit QHT circuit composed 
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of H gates, 𝑅𝑅𝑘𝑘 and SWAP gates, is shown in Fig. 4. The QFT transformation can be represented 

using a single unitary matrix, 𝑈𝑈𝑄𝑄𝑄𝑄𝑄𝑄, of size 𝑁𝑁 × 𝑁𝑁, as shown in Fig. 4, where 𝜔𝜔𝑖𝑖 = 𝑒𝑒
2𝜋𝜋𝜋𝜋
𝑛𝑛 . 

 
|𝜓𝜓⟩ =  

1
√2𝑖𝑖

 � 𝑓𝑓(𝑞𝑞𝑞𝑞𝑞𝑞)|𝑞𝑞⟩
2𝑛𝑛−1

𝑞𝑞=0

𝑄𝑄𝑄𝑄𝑄𝑄
�⎯�  

1
√2𝑖𝑖

 � � 𝑓𝑓(𝑞𝑞𝑞𝑞𝑞𝑞)𝑒𝑒2𝜋𝜋𝑖𝑖(
𝑞𝑞𝑘𝑘
2𝑛𝑛)|𝑘𝑘⟩

2𝑛𝑛−1

𝑞𝑞=0

2𝑛𝑛−1

𝑘𝑘=0

 (6a) 

 
� |𝑓𝑓(𝑞𝑞𝑞𝑞𝑞𝑞)|2
2𝑛𝑛−1

𝑞𝑞=0

= 1 (6b) 
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Fig. 4: Quantum circuit and corresponding transformation matrix for n-qubit QFT. 

2.2.2 Quantum Wavelet Transform 

The wavelet-transform (WT) decomposes signals/data into its spatio-temporal spectral 

components [33]. Unlike Fourier-transform, WT uses a set of non-sinusoidal functions, called 

mother-wavelets, which are localized spatially and temporally [33], resulting in the preservation 

of data spatial-locality. The computational speed of WT is higher than other transforms [33] 
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making it highly effective and commonly implemented in image processing applications. The first 

and simplest WT was introduced by mathematician Alfred Haar [34] and is thus named the Haar 

wavelet transform. The Haar mother wavelet function can be constructed using a unit step function, 

as shown in (7a). The discretized version of the Haar wavelet function is defined in (7b).  

Ψ(𝑞𝑞)𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑢𝑢(𝑞𝑞) − 2𝑢𝑢 �𝑞𝑞 −
1
2�

+ 𝑢𝑢(𝑞𝑞 − 1) (7a) 

Ψ𝐷𝐷∗ = �
𝑖𝑖
𝑁𝑁�

=

⎩
⎪
⎨

⎪
⎧+1, 0 ≤ 𝑖𝑖 ≤

𝑁𝑁
2

−1,
𝑁𝑁
2
≤ 𝑖𝑖 ≤ 𝑁𝑁

0,        otherwise

 (7b) 

The discrete wavelet transform can be implemented as quantum Wavelet transform (QWT) [35] 

in the quantum domain. The general QWT can be expressed [36] by: 

 
( ) ( )

1 1
2

0 0
. , where | . | 1

N N

q q
f q t q f q tψ

− −

= =

= ∆ ∆ =∑ ∑  (7c) 
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1 .
N N

QWT
j q

q jf q t j
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ψ
− −
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(7d) 
 

( )
1 1

0 0

1 .
N N

QWT
j q

q jf q t j
KN

ψ
− −

= =

− = ∆ Ψ 
 

∑∑  

where Ψ is the mother wavelet function in complex conjugate form, t∆  is the sampling period, 

K  is the wavelet-window-size in samples, 2nN =  is the number of data samples represented as 

the total number of quantum states, n is the number of qubits, ψ  is the input state, and 
QWT

ψ  

is the output state. The expression for quantum Haar transform (QHT) can thus be derived using 

the Haar wavelet function Ψ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, see (7d).  

The Haar wavelet function can be generalized by quantum operations using 𝑛𝑛 qubits, and a 𝑑𝑑-

dimension kernel. The Haar unitary transformation, 𝑈𝑈𝑄𝑄𝐻𝐻𝑄𝑄, using 𝑑𝑑 entangled 𝐻𝐻 gates and 𝑛𝑛 − 𝑑𝑑 
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entangled 𝐼𝐼 gates is shown in (7e), where 𝐻𝐻 is the Hadamard gate and 𝐼𝐼 is the identity matrix.  For 

two-dimensional QHT (2D-QHT) with 𝑑𝑑 = 2, the transformation matrix can be derived as shown 

in (7f). 

𝑈𝑈𝑄𝑄𝐻𝐻𝑄𝑄 = 𝐼𝐼⨂(𝑖𝑖−𝑑𝑑)⨂𝐻𝐻⨂𝑑𝑑 

where, 𝐻𝐻⨂𝑑𝑑 = 𝐻𝐻⨂𝐻𝐻⨂…⨂𝐻𝐻���������
𝑑𝑑

 ,    𝐼𝐼⨂(𝑖𝑖−𝑑𝑑) = 𝐼𝐼⨂𝐼𝐼⨂…⨂𝐼𝐼�������
𝑖𝑖−𝑑𝑑

,                                                

𝐻𝐻 = 1
√2
�1 1
1 −1� , 𝐼𝐼 = �1 0

0 1� 

(7e) 

𝑈𝑈𝑄𝑄𝐻𝐻𝑄𝑄2𝐷𝐷 = 𝐼𝐼⨂(𝑖𝑖−2)⨂𝐻𝐻⨂2 

where, 𝐻𝐻⨂2 = 𝐻𝐻⨂𝐻𝐻 = 1
2
�
1 1 1 1
1
1
1

−1
1
−1

1
−1
−1

−1
−1
1
� 

(7f) 

 

2.2.3 Quantum Grover’s search 

Grover’s search is a quantum algorithm that can be used to search over an unsorted list of N 

elements [16]. The objective of this search algorithm is to find an element 𝑠𝑠 ∗ that satisfies 

𝑓𝑓(𝑠𝑠∗)  =  1 and holds (8) true, where 𝑠𝑠∗ belongs to the set { }1 2 3, , ,..., NS s s s s= , N is the cardinality 

of S, and f is a Boolean function such that { }( ) 0,1f x → . 

 1, if *
( )

0, if *
x s

f x
x s
=

=  ≠
 (8) 

A quantum computer running Grover’s algorithm can perform the search in N queries 

compared to the best classical search algorithm, resulting in a quadratic speedup [5]. Grover’s 

algorithm can also be used to find multiple items/patterns from a list. A pattern is defined here as 

a string of bits. To find multiple patterns, the total number of solutions must be known ahead of 

running the algorithm [16]. When searching for multiple patterns, Grover’s algorithm will find any 



19 
 

of the target patterns with equal probability [16]. The inputs to Grover’s algorithm are the patterns 

encoded as the basis states of a superimposed quantum state. Initially, the input state is in equal 

superposition, i.e., their coefficients/amplitudes are equal, and therefore the probabilities of 

locating any item in the list are also equal. To obtain this input state an H gate is applied to the 

ground or zero state of each qubit. Two operations are then performed for an optimal number of 

iterations on this initial state, namely, oracle (also called phase inversion and diffusion (also called 

inversion about the mean) [16]. 

The oracle step or phase inversion operation [16], takes the input quantum state and inverts 

the coefficients/amplitudes of the basis states representing the patterns for which we are searching 

[16]. To see how this function works, let our oracle be denoted as oracleU , as shown in (9). If *x s≠

, then ( )f x = 0 and x  will have no change. Otherwise, x  will be multiplied by −1, resulting 

in a phase inversion for x . 

 ( )( 1) f x
oracleU x x= −  

𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖 = 𝐼𝐼 − 2|𝑥𝑥⟩⟨𝑥𝑥| 
(9) 

The general quantum circuit of the oracle is shown in Fig. 5(a). The X gates in Fig. 5(a) have 

a dashed border indicating that the gate may or may not be needed for its corresponding qubit, 

depending on the target pattern. An X gate should be placed if the basis state for the target qubit is 

a 0 . For example, if the sought pattern is 0.....0 then an X gate should be placed on every qubit. 

If 1.....1  is the target pattern, then there should be no corresponding X gates. Therefore, the 

conventional oracle circuit must be modified every time the target input pattern changes. 
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(a) Circuit for oracle operation (b) Circuit for diffusion operation 

Fig. 5: Quantum circuits for Grover’s search algorithm. 

In the diffusion step, also called inversion about the mean operation or amplitude amplification 

operation, the inverted coefficients/amplitudes will be amplified, and the other 

coefficients/amplitudes will be attenuated [16]. This operation, denoted as diffusionU  in (9), is done 

by finding the mean value of all the amplitudes and inverting each amplitude about the mean. This 

causes the positive amplitudes, which are close to but greater than the mean, to be attenuated while 

the negated amplitudes, which are less than the mean, to be amplified [16]. The general quantum 

circuit of the diffusion operation is shown in Fig. 5(b). 

Repeating the two steps, i.e., oracle, and diffusion, consecutively will increase the target 

amplitudes of the target patterns (basis states), thus increasing the probability that the quantum 

state collapses to the target basis state(s). Boyer et al. [37] derived the optimal number of iterations, 

𝑚𝑚, required for maximizing the probability of successful search, see (10), where 𝑁𝑁 is the size of 

the unsorted list of elements, patternsN  equals the number of solutions/patterns being searched for 

such that patternsN N≤ , and 𝑘𝑘 = 1, 3, 5, 7, 𝐼𝐼 is an odd number. For single-pattern Grover’s 

algorithm, the target pattern’s amplitude will be close to 1 at the end of 𝑚𝑚 iterations. For multi-

pattern Grover’s algorithm, each of the target patterns (basis states) will have equal but higher 

amplitudes compared to the remaining basis state coefficients at the end of 𝑚𝑚 iterations. 
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𝑚𝑚 =

⎣
⎢
⎢
⎢
⎢

𝜋𝜋 ∙ 𝑘𝑘

4 sin−1 ��
𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑

𝑁𝑁 �
⎦
⎥
⎥
⎥
⎥

 (10) 

 

2.3 CPU/GPU-based Software Simulators 

The work in [22] demonstrated a massively parallel quantum simulator implemented on 

different supercomputing platforms. Simulation of up to 48 qubits was performed, however, high 

number of resources (1 petabyte memory) were consumed, and no software optimizations were 

reported. A GPU-accelerated simulation of quantum annealing, and the Quantum Approximation 

Optimization Algorithm (QAOA) was presented in [24], showing simulation of up to 40 qubits. 

For this simulation, a large-scale supercomputer with around 4K Tensor Core GPUs distributed 

over 936 nodes was utilized. The authors in [20] proposed a GPU-based simulator, showing 

implementation of up to 25 qubits, while a minimal quantum circuit was used in the simulation 

case study. The work in [38] also used GPUs and achieved simulation of entangled Hadamard 

gates up to 21 qubits. In [23], the authors demonstrated simulation of up to 38 qubits using a GPU 

accelerated platform. However, cost-prohibitive amounts of computing resources (2048 nodes and 

24 cores/node) were dedicated in the simulation. One of the recent works on quantum simulation 

[21] used a cluster supercomputing platform supported by the Alibaba group. In that work, the 

authors demonstrated simulation of up to 144 qubits with circuit depth of 27 gate levels using 

131,072 processors and 1 petabyte memory. However, they have not investigated any quantum 

algorithms and the circuits consist of random gates. Furthermore, their simulator was shown to 

evaluate only one out of all possible output states. The existing CPU/GPU-based quantum 

simulators are costly since they consume large amounts of resources in terms of required number 
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of processors and system memory. The proposed FPGA-based emulation framework in this work 

is much less resource-intensive and is therefore highly cost-effective compared to existing 

CPU/GPU-based simulators. 

2.4 FPGA-based Hardware Emulators 

An assortment of work has also been done on hardware-based emulation of quantum circuits 

using FPGAs. In [25] the authors presented a quantum processor that abstracted quantum circuit 

operations into binary logic. The proposed system was shown to emulate up to 75 qubits. However, 

the modeling methodology of the quantum operations was highly inaccurate due to the use of low 

precision (1 bit) for the representation of state coefficients. Moreover, hardware cost in terms of 

resource utilization was not reported. In [27] the authors implement an emulator based on a library 

of quantum gates. The gate operations were implemented using fixed-point arithmetic, and a low 

operating frequency of 82.4 MHz was reported for the emulation of 3-qubit QFT and Grover’s 

search algorithm. In [39] the authors proposed a similar fixed-point emulator, reporting up to 3-

qubit QFT, but details regarding both their approach and the mapping of the quantum algorithm to 

the proposed architecture are missing. Moreover, quantum entanglement was also missing in their 

model. In [28] and [29] the authors present hardware architectures emulating QFT and Grover’s 

search circuits. In their work, a maximum fixed-point precision of 24-bits was used to emulate up 

to 5-qubit QFT and 7-qubit Grover’s search on a single FPGA. Scalability of their design is limited 

and there is no proposed solution to the problem of scalability. In [30] the authors propose a high-

level synthesis (HLS) based emulation framework for QFT, but here also, the scalability of their 

design is limited and the authors did not address that limitation. In  a  related  work, ProjectQ [26] 

compared simulation and emulation results trying to showcase the superiority of quantum 

computer emulators in terms of performance.  
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While modular and hierarchical modeling approaches in previous works improved re-usability, 

the modeling of each quantum gate as an individual component consumes greater resources, 

reduces accuracy, and limits scalability. In this work, we propose and evaluate emulation models 

that significantly reduce the resource utilization and emulation times, thus improving scalability 

and allowing the use of floating-point precision for improved accuracy. In this work, we report the 

highest number of fully entangled qubits on a single FPGA among related work. Lastly, fully 

pipelined designs of the hardware architectures resulted in higher operating frequency and 

throughput compared to existing emulators. The proposed emulation framework is also the first 

among existing related work, to integrate C2Q and Q2C methods with emulation of quantum 

algorithms.  
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Chapter 3: Classical-to-Quantum Encoding 

3.1 Related Work 

Existing methods of encoding classical data to a quantum representation are of three types: (a) 

basis encoding, (b) angle encoding, and (c) amplitude encoding [40]. Basis encoding involves 

encoding the binary representations of the data points as basis states. Typically, this technique is 

costly in terms of number of qubits. The authors in [41] presented an optimized basis encoding 

technique for image processing, where pixels are represented by the tensor product of their color 

and position. As a result of their optimization, the qubit cost was lowered, however their technique 

incurred greater circuit depth. Angle encoding represents one data point per qubit, with each data 

point encoded as a normalized rotation in the Bloch sphere. The authors in [42] investigated angle 

encoding and presented a quantum method for image edge detection. However, their method might 

render being unrealistic because each image pixel requires one qubit for encoding. In amplitude 

encoding, each data point is represented as the amplitude/coefficient of a basis state in a 

superimposed quantum state. The work in [43] proposed circuits with depth complexity 𝑂𝑂(𝑛𝑛), 

where n is the number of qubits. However, the number of qubits required is of the order 𝑂𝑂(𝑁𝑁), 

where 𝑁𝑁 = 2𝑖𝑖 is the data size, therefore the proposed circuits are not feasible for current or near-

future quantum processors.  

Among the data encoding methods, amplitude encoding can represent the largest number of 

data points with the least number of qubits, but the technique requires complex quantum circuits 

to implement. Over the years, a number of methodologies based on amplitude encoding have been 

proposed for quantum state-preparation, also known as arbitrary state synthesis [19], [44], [45], 

[46], [47]. The most efficient methods have a spatial complexity of 𝑂𝑂(2𝑖𝑖+2), where 𝑛𝑛 is the 

number of qubits of the corresponding state-preparation circuit. In each work, the synthesis method 
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has been evaluated by counting the total number of quantum gates (gate count) in the synthesis 

circuit. However, there has been insufficient emphasis on quantum circuit depth [48] for state 

synthesis. The circuit depth is defined as the number of gates or time-steps in the longest path of a 

circuit. The circuit depth is closely related to the temporal complexity [48] and can be used to 

determine whether a quantum circuit can be run within the decoherence constraints of a particular 

quantum system. 

Song and Williams in [44] presented methodologies for synthesizing any 𝑛𝑛-qubit pure state or 

mixed state. For synthesizing a pure state, their algorithm involves first applying Gram-Schmidt 

procedure on a matrix that contains the input data as the leftmost column, to produce a unitary 

matrix. The unitary matrix is then synthesized to a quantum circuit using a recursive algebraic 

method that has a complexity of 𝑂𝑂(22𝑖𝑖) [16], where 𝑛𝑛 is the number of qubits. The authors in [46] 

presented transformations for one arbitrary state |a⟩ to another |b⟩ using uniformly controlled 

rotations. From their presented circuit transformation from |a⟩ to |b⟩, it can be inferred that 

transformation from |a⟩ to |0⟩ (or to any basis state) would require half the reported gate count. 

No analysis of circuit depth was provided in their work. To compare with our proposed circuits, 

we considered their circuit transforming state |a⟩ to |0⟩ and calculated the corresponding gate 

count and circuit depth to be 2(𝑖𝑖+2) − 6. The work in [19] presented a method based on 

disentangling a qubit, i.e., producing a basis state |0⟩ or |1⟩ on the lowest significant  qubit. The 

authors state that this disentangling method, which requires 2𝑖𝑖 − 2 CNOT gates for an 𝑛𝑛-qubit 

circuit, can be used recursively to transform any state to a desired basis state. They reported that 

the resulting final transformation circuit uses 2𝑖𝑖+1 − 2𝑛𝑛 CNOT gates, however, no detailed 

analysis was provided. Furthermore, only the CNOT gate count was provided, while their proposed 

circuit also requires single-qubit rotation gates that would double the total gate count to 2𝑖𝑖+2 −
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2𝑛𝑛. In [47] the proposed methodology is based on applying 𝑛𝑛 − 1 rotation steps with permutations 

on the amplitudes in-between each rotation where additional gates are required in the intermediate 

permutations. The total gate count reported is 2𝑖𝑖+2 + 4𝑛𝑛 − 9 with no circuit representation of their 

methodology. To be consistent with our analyses, we calculated their circuit depth to be 2𝑖𝑖+2 +

3𝑛𝑛 − 8. 

In this work, we have defined the process of encoding classical data onto the quantum domain 

as classical-to-quantum (C2Q) data encoding. We propose two C2Q methods based on amplitude 

encoding and the corresponding state-preparation/state-synthesis circuits that results in a lower 

circuit complexities than existing methods. We present the analytic expression for circuit gate 

depths that were not considered in prior work. We also present the full and optimized quantum 

circuits corresponding to our methods, and experimentally evaluate our circuits using simulation, 

emulation on FPGA, and hardware implementation on a real quantum device from IBM Quantum 

(IBM Q) [14]. In addition, the state fidelity of the proposed circuits is reported for the simulations 

on the quantum device. 

3.2 Proposed Methods 

We propose two methods and corresponding quantum circuits for C2Q data encoding. Given 

a classical dataset of 𝑁𝑁 = 2𝑖𝑖 elements, where n is the number of required qubits to represent the 

classical dataset, we propose a quantum circuit denoted as 𝑈𝑈𝐶𝐶2𝑄𝑄−1 that synthesizes a corresponding 

quantum state with encoded classical data. 𝑈𝑈𝐶𝐶2𝑄𝑄−1 is parameterized by the global scale r, global 

phase t, azimuth angle 𝜑𝜑, and elevation angle 𝜃𝜃.  We also present an optimized state synthesis 

circuit 𝑈𝑈𝐶𝐶2𝑄𝑄−2 that is characterized by unity global scale, i.e., 𝑟𝑟 = 1. The steps of the proposed 

methodology in the formation of the circuits 𝑈𝑈𝐶𝐶2𝑄𝑄−1 and 𝑈𝑈𝐶𝐶2𝑄𝑄−2 are elaborated in the next 

subsections.  
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3.2.1 Method 1: State Synthesis with Global Scale and Phase 

A quantum register of 𝑛𝑛 qubits that is in ground state is defined as |𝜓𝜓0⟩=|0⟩⨂𝑖𝑖. Given a 

classical data set of 𝑁𝑁 = 2𝑖𝑖 elements, the objective is to synthesize a target input quantum state 

given by |𝜓𝜓⟩ = ∑ 𝛼𝛼𝑖𝑖|𝑖𝑖⟩𝑁𝑁−1
𝑖𝑖=0 . Every 𝑖𝑖𝑜𝑜ℎ element from the classical data set will be encoded as a basis 

state coefficient 𝛼𝛼𝑖𝑖 in the quantum state |𝜓𝜓⟩. For state-preparation or state-synthesis, it is required 

to find a quantum circuit, 𝑈𝑈𝐶𝐶2𝑄𝑄−1, that transforms the ground state |𝜓𝜓0⟩ to the target state |𝜓𝜓⟩, i.e., 

|𝜓𝜓⟩ = 𝑈𝑈𝐶𝐶2𝑄𝑄−1 ∙ |𝜓𝜓0⟩. 

Any arbitrary single-qubit gate can be decomposed as a series of 𝑅𝑅𝑧𝑧 and 𝑅𝑅𝑦𝑦 gates known as 

the ZYZ or Pauli decomposition [16] [19]. Therefore, a qubit in ground state |0⟩ can be 

transformed to any arbitrary state |𝜓𝜓⟩ by applying a rotation of angle 𝜃𝜃 about 𝑦𝑦-axis, followed by 

a rotation of angle 𝜙𝜙 about the 𝑧𝑧-axis, followed by a global scale and phase shift, see Fig. 6 and 

(11): 

|𝜓𝜓⟩ = 𝑅𝑅𝑧𝑧(𝜙𝜙) ∙ 𝑅𝑅𝑦𝑦(𝜃𝜃) ∙ 𝑟𝑟𝑒𝑒𝑖𝑖
𝑜𝑜
2 ∙ |0⟩ (11) 

where 𝑟𝑟𝑒𝑒𝑖𝑖
𝑡𝑡
2 is an unobservable global quantity [16] for the single qubit, 𝑟𝑟 is the global scale 

parameter [16], and 𝑞𝑞 is the unobservable global phase shift [16]. If the coefficients of the target 

state |𝜓𝜓⟩ are 𝛼𝛼 and 𝛽𝛽, such that |𝜓𝜓⟩ = �
𝛼𝛼
𝛽𝛽� and |0⟩ = �10�, then the parameters 𝑟𝑟, 𝑞𝑞, 𝜃𝜃, and 𝜙𝜙 for the 

transformation given in (11) could be determined by substituting the transformation matrices of 

𝑅𝑅𝑧𝑧 and 𝑅𝑅𝑦𝑦, see Fig. 3 , in (11), and are given by: 

𝑟𝑟 = �𝛼𝛼2 + 𝛽𝛽2, 𝑞𝑞 = ∠𝛽𝛽 + ∠𝛼𝛼 

𝜃𝜃 = 2 tan−1 �
|𝛽𝛽|
|𝛼𝛼|� ,     𝜙𝜙 = ∠𝛽𝛽 − ∠𝛼𝛼   

(12) 

where, 
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|𝛼𝛼| = �Re2(𝛼𝛼) + Im2(𝛼𝛼),   ∠𝛼𝛼 = tan−1 �
Im(𝛼𝛼)
Re(𝛼𝛼)�, 

|𝛽𝛽| = �Re2(𝛽𝛽) + Im2(𝛽𝛽),   ∠𝛽𝛽 = tan−1 �
Im(𝛽𝛽)
Re(𝛽𝛽)� 

Using the Pauli decomposition described by (11) and the parameters obtained by (12), we 

derive a method for transforming any 𝑛𝑛-qubit register in the ground state |𝜓𝜓0⟩ = |0⟩⊗𝑖𝑖 to an 

arbitrary state |𝜓𝜓⟩, see Fig. 7. To synthesize the 𝑗𝑗𝑜𝑜ℎ pair of coefficients, or �𝜓𝜓𝑗𝑗� in the state vector 

of |𝜓𝜓⟩, 𝑈𝑈𝑗𝑗 is applied on a ground state |𝜓𝜓0⟩, where 𝑗𝑗 = 0,1,2, … , (2𝑖𝑖−1 − 1). However, 𝑈𝑈𝑗𝑗 cannot 

be applied to a single qubit in the 𝑛𝑛-qubit register to synthesize the corresponding pair of 

coefficients without also affecting the other coefficients in |𝜓𝜓⟩. Hence, each transformation 𝑈𝑈𝑗𝑗 

needs to be applied conditionally to synthesize the 𝑗𝑗𝑜𝑜ℎ pair of coefficients in the output state. The 

resulting conditional quantum circuit can be represented by a block-diagonal matrix 𝑈𝑈𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘, of 

which each diagonal block is a 2 × 2 transformation matrix 𝑈𝑈𝑗𝑗, see Fig. 6 and (13). The elements 

of 𝑈𝑈𝑗𝑗 are calculated using the parameters 𝑟𝑟𝑗𝑗 , 𝑞𝑞𝑗𝑗 ,𝜃𝜃𝑗𝑗 , and 𝜙𝜙𝑗𝑗 obtained from the 𝑗𝑗𝑜𝑜ℎ pair of coefficients 

using (12). 

 

Fig. 6: Pauli decomposition for single-qubit state synthesis. 

𝑈𝑈𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 = 𝑈𝑈0 ⊕ 𝑈𝑈1 ⊕ …𝑈𝑈𝑗𝑗 …⊕𝑈𝑈�2𝑛𝑛−1−1� 

= 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 �𝑈𝑈0,𝑈𝑈1, …𝑈𝑈𝑗𝑗 , … ,𝑈𝑈�2𝑛𝑛−1−1�� 
(13) 

A block-diagonal matrix such as 𝑈𝑈𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 can be implemented as a quantum multiplexer [44] 

[19] with 𝑛𝑛 qubits of which (𝑛𝑛 − 1) are control qubits acting on the least significant target qubit. 
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The corresponding circuit is shown in Fig. 7. For each combination of the control qubits, the 

corresponding 𝑈𝑈𝑗𝑗 transformation is applied on the target qubit 𝑞𝑞0, where 𝑗𝑗 = 0,1,2, … , (2𝑖𝑖−1 − 1). 

To produce all combinations on the control qubits with equal probability, a set of 𝐻𝐻 gates must be 

applied on the (𝑛𝑛 − 1) control qubits before applying the 𝑈𝑈 transformation. The desired final state 

|𝜓𝜓⟩ is produced at the output with the target coefficients as a result of uniformly applying each 𝑈𝑈𝑗𝑗 

transformation on the least significant qubit. The overall transformation, 𝑈𝑈𝐶𝐶2𝑄𝑄−1, from ground 

state |𝜓𝜓0⟩ = |0⟩⊗𝑖𝑖 to |𝜓𝜓⟩ can be expressed by (14). 

 
Fig. 7: Conditional logic-based quantum circuit for arbitrary state synthesis. The white and black 

circles on the control qubits represent bit values of zero and one respectively. 
 

|𝜓𝜓⟩ = 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 ⋅ |𝜓𝜓0⟩ = 𝑈𝑈𝐶𝐶2𝑄𝑄−1 ∙ |0⟩⊗𝑖𝑖,  where 

𝑈𝑈𝐶𝐶2𝑄𝑄−1 = �√2�
𝑖𝑖−1

∙ 𝑈𝑈𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 ∙ �𝐻𝐻⨂(𝑖𝑖−1)⨂𝐼𝐼�, and  

𝐼𝐼 is a 2 × 2 identity matrix 

(14) 

Each 𝑈𝑈𝑗𝑗 block is a sequence of a phase and scale shift, followed by 𝑦𝑦-rotation, followed by 𝑧𝑧-

rotation as shown in Fig. 8, and 𝑈𝑈𝑗𝑗 is calculated from the corresponding set of parameters 

�𝑟𝑟𝑗𝑗 , 𝑞𝑞𝑗𝑗 ,𝜃𝜃𝑗𝑗 ,𝜙𝜙𝑗𝑗� obtained by (12). Since each set of operations are mutually exclusive from each other, 

we can separate them into uniformly controlled groups of phase and scale shifts, 𝑦𝑦-rotations, and 

𝑧𝑧-rotations as shown in Fig. 9. 
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Fig. 8: Factorization of the Uj transformation. 

 
Fig. 9: Expanded full quantum circuit for arbitrary state synthesis. 

To represent uniformly controlled operations as a single gate operation, we use a notation 

previously used in [19], where the sequence of different combinations on the control qubits are 

replaced with a `square box’ notation indicating multi-control, and the parameterized operations 

for each combination are replaced by a single box denoting the general operation. We use this 

notation to simplify the circuit in Fig. 9 and the resulting circuit representation is shown in Fig. 

10. 

The uniformly controlled 𝑅𝑅𝑦𝑦 and 𝑅𝑅𝑧𝑧 rotation operations in Fig. 10 can be decomposed into a 

sequence of primitive CNOT and one-qubit rotation gates. A systemic decomposition method was 

presented in [45] which we leverage for our methodology. The method involves taking the binary 

reflected gray code of the control bit sequence to determine the control qubit positions of the 
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CNOT gates. As a demonstrative example, the decomposition for a 3-qubit controlled 𝑅𝑅𝑦𝑦 operation 

with rotation angles 𝜃𝜃𝑗𝑗 is shown in Fig. 11. To calculate the new set of rotation angles 𝜃𝜃𝚥𝚥�  for the 

one-qubit rotations in Fig. 11, a transformation matrix 𝑀𝑀𝑖𝑖𝑗𝑗
𝑘𝑘 = (−1)𝑏𝑏𝜋𝜋−1∙𝑔𝑔𝑗𝑗−1 was formulated in [49]. 

The exponent of this matrix is the bit-wise inner product of the binary vectors for standard binary 

representation, 𝑏𝑏𝑖𝑖−1, and gray code representation 𝑑𝑑𝑗𝑗−1. Applying the inverse of 𝑀𝑀𝑖𝑖𝑗𝑗
𝑘𝑘  on the vector 

of angles 𝜃𝜃𝑗𝑗 consequently produces a vector of angles 𝜃𝜃𝚥𝚥� . The decomposition for one uniformly 

controlled rotation operations takes 2𝑖𝑖 gates (2𝑖𝑖−1 CNOTs and 2𝑖𝑖−1 one-qubit rotations) in total 

[19] [47] [49]. We apply this decomposition for the uniformly controlled 𝑅𝑅𝑦𝑦 and 𝑅𝑅𝑧𝑧 rotation 

operations in Fig. 10. 

 
Fig. 10: Simplified full quantum circuit for arbitrary state synthesis. 

 

 

Fig. 11: Decomposition of a uniformly controlled 3-qubit Ry rotation operation. 
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3.2.2 Method 2: State Synthesis with Unity Global Scale 

The proposed C2Q circuit in Fig. 10 considers the global scale and phase shift parameters, 

which are unobservable in actual quantum systems. We propose a more practical approach for 

synthesizing a quantum state in which the global scale is unity, i.e., 𝑟𝑟 = 1. The corresponding 

optimized state-preparation circuit 𝑈𝑈𝐶𝐶2𝑄𝑄−2 that is characterized by unity global scale is also 

presented.  

Given 𝑁𝑁 = 2𝑖𝑖 data points, we want to synthesize a target n-qubit quantum state |𝜓𝜓⟩ with N 

coefficients, 𝐶𝐶0,𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1, such that the coefficients are equal to the data points. From the given 

coefficients, we calculate an array of intermediate probabilities 𝑃𝑃𝑖𝑖,𝑗𝑗 as shown in (15), for 0 < 𝑗𝑗 <

𝑛𝑛 − 1 and 0 < 𝑖𝑖 < 𝑘𝑘𝑗𝑗 − 1, where 𝑘𝑘𝑗𝑗 = 2𝑖𝑖−1−𝑗𝑗. 

𝑃𝑃𝑖𝑖,𝑗𝑗 = �
|𝐶𝐶2𝑖𝑖|2 + |𝐶𝐶2𝑖𝑖+1|2     𝑗𝑗 = 0, 0 ≤ 𝑖𝑖 < 2𝑖𝑖−1              
𝑃𝑃2𝑖𝑖,𝑗𝑗−1 + 𝑃𝑃2𝑖𝑖+1,𝑗𝑗−1  1 ≤ 𝑗𝑗 < 𝑛𝑛, 0 ≤ 𝑖𝑖 < 2𝑖𝑖−1−𝑗𝑗      

0,                   2𝑖𝑖−1−𝑗𝑗 ≤ 𝑖𝑖 < 2𝑖𝑖−1    
 (15) 

Using the 𝑃𝑃𝑖𝑖,𝑗𝑗 probabilities, we calculate the coefficient pairs 𝛼𝛼𝑖𝑖,𝑗𝑗 and 𝛽𝛽𝑖𝑖,𝑗𝑗, as shown in (16) 

and (17). 

𝛼𝛼𝑖𝑖,𝑗𝑗 =

⎩
⎪⎪
⎨

⎪⎪
⎧  

𝐶𝐶2𝑖𝑖
�𝑃𝑃𝑖𝑖,𝑗𝑗

    𝑃𝑃𝑖𝑖,𝑗𝑗 ≠ 0, 𝑗𝑗 = 0, 0 ≤ 𝑖𝑖 < 2𝑖𝑖−1              

�
𝑃𝑃2𝑖𝑖,𝑗𝑗−1
𝑃𝑃1,𝑗𝑗

 𝑃𝑃𝑖𝑖,𝑗𝑗 ≠ 0, 1 ≤ 𝑗𝑗 < 𝑛𝑛, 0 ≤ 𝑖𝑖 < 2𝑖𝑖−1−𝑗𝑗      

1,                    𝑃𝑃𝑖𝑖,𝑗𝑗 = 0                                      

 (16) 

𝛽𝛽𝑖𝑖,𝑗𝑗 =

⎩
⎪⎪
⎨

⎪⎪
⎧  

𝐶𝐶2𝑖𝑖
�𝑃𝑃𝑖𝑖,𝑗𝑗

    𝑃𝑃𝑖𝑖,𝑗𝑗 ≠ 0, 𝑗𝑗 = 0, 0 ≤ 𝑖𝑖 < 2𝑖𝑖−1              

�
𝑃𝑃2𝑖𝑖+1,𝑗𝑗−1

𝑃𝑃1,𝑗𝑗
 𝑃𝑃𝑖𝑖,𝑗𝑗 ≠ 0, 1 ≤ 𝑗𝑗 < 𝑛𝑛, 0 ≤ 𝑖𝑖 < 2𝑖𝑖−1−𝑗𝑗      

0,                    𝑃𝑃𝑖𝑖,𝑗𝑗 = 0                                      

 (17) 
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From the new coefficient pairs 𝛼𝛼𝑖𝑖,𝑗𝑗 and 𝛽𝛽𝑖𝑖,𝑗𝑗, we calculate the parameters 𝜃𝜃𝑖𝑖,𝑗𝑗, 𝜑𝜑𝑖𝑖,𝑗𝑗, 𝑞𝑞𝑖𝑖,𝑗𝑗, and 𝑟𝑟𝑖𝑖,𝑗𝑗, 

as shown in (18), required for transforming each qubit and synthesizing the target quantum state. 

This methodology results in values of 𝑟𝑟𝑖𝑖,𝑗𝑗 being unity. 

𝑟𝑟𝑖𝑖,𝑗𝑗 = ��𝛼𝛼𝑖𝑖,𝑗𝑗�
2 + �𝛽𝛽𝑖𝑖,𝑗𝑗�

2, 𝑞𝑞𝑖𝑖.𝑗𝑗 = ∠𝛽𝛽𝑖𝑖,𝑗𝑗 + ∠𝛼𝛼𝑖𝑖,𝑗𝑗 

𝜃𝜃𝑖𝑖,𝑗𝑗 = 2 tan−1 �
�𝛽𝛽𝑖𝑖,𝑗𝑗�
�𝛼𝛼𝑖𝑖,𝑗𝑗�

� ,     𝜙𝜙𝑖𝑖,𝑗𝑗 = ∠𝛽𝛽𝑖𝑖,𝑗𝑗 − ∠𝛼𝛼𝑖𝑖,𝑗𝑗    

(18) 

 

 

where, 

�𝛼𝛼𝑖𝑖,𝑗𝑗� = �Re2�𝛼𝛼𝑖𝑖,𝑗𝑗� + Im2�𝛼𝛼𝑖𝑖,𝑗𝑗�,   ∠𝛼𝛼𝑖𝑖,𝑗𝑗 = tan−1 �
Im�𝛼𝛼𝑖𝑖,𝑗𝑗�
Re�𝛼𝛼𝑖𝑖,𝑗𝑗�

�, 

�𝛽𝛽𝑖𝑖,𝑗𝑗� = �Re2�𝛽𝛽𝑖𝑖,𝑗𝑗� + Im2�𝛽𝛽𝑖𝑖,𝑗𝑗�,   ∠𝛽𝛽𝑖𝑖,𝑗𝑗 = tan−1 �
Im�𝛽𝛽𝑖𝑖,𝑗𝑗�
Re�𝛽𝛽𝑖𝑖,𝑗𝑗�

� 

and, 

𝑗𝑗 = 0, 1, … , (𝑛𝑛 − 1), 

𝑖𝑖 = 0, 1, … , �𝑘𝑘𝑗𝑗 − 1�, 

𝑘𝑘𝑗𝑗 = 2𝑖𝑖−1−𝑗𝑗 

The corresponding quantum circuit 𝑈𝑈𝐶𝐶2𝑄𝑄−2 consists of a series of operations 𝑈𝑈𝑗𝑗 where 𝑗𝑗 =

0, 1, … , (𝑛𝑛 − 1), see Fig. 12. A set of 𝑅𝑅𝑦𝑦(𝜃𝜃𝑗𝑗) rotations is applied in the first (𝑛𝑛 − 1) operations 𝑈𝑈𝑗𝑗, 

where 𝑗𝑗 = (𝑛𝑛 − 1), (𝑛𝑛 − 2), … , 2, 1, followed by a set of 𝑅𝑅𝑦𝑦(𝜃𝜃0) and 𝑅𝑅𝑧𝑧(𝜑𝜑0) rotations, and global 

phase shift 𝑞𝑞 in 𝑈𝑈0, see Fig. 12(a). Each 𝑈𝑈𝑗𝑗 is a uniformly-controlled operation, shown in Fig. 12(b). 

As shown in Fig. 12(c), a number  (𝑘𝑘𝑗𝑗 = 2𝑖𝑖−1−𝑗𝑗) of 𝑈𝑈𝑖𝑖,𝑗𝑗 rotation operations are applied for each 

𝑈𝑈𝑗𝑗, where 𝑖𝑖 = 0, 1, … , �𝑘𝑘𝑗𝑗 − 1�, and 0 ≤ 𝑗𝑗 < 𝑛𝑛. Each 𝑈𝑈𝑖𝑖,𝑗𝑗 is a Pauli decomposition [16] operation 

requiring a 4-tuple of parameters (𝜃𝜃,𝜑𝜑, 𝑟𝑟, 𝑞𝑞) which are calculated from given classical data set |𝜓𝜓⟩ 

using the steps described previously in (15) to (18). 
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(a) Quantum circuit for C2Q data encoding with unity global scale. 

 
(b) Uniformly-controlled operations. 

 
(c) Pauli decomposition for single-qubit state synthesis. 

Fig. 12: Quantum circuits for C2Q data encoding with unity global scale. 

 

3.2.3 Analysis of Circuit Depth for Proposed Methods 

To determine the circuit depths for the proposed C2Q circuits, we present two types of depth 

analysis: (a) considering uniformly-controlled gates, and (b) considering primitive 2-qubit CNOT 
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and 1-qubit rotation gates. For each type of analysis, we also consider two types of input data: (a) 

complex data, and (b) positive real data. The derived circuit depths for the proposed C2Q methods 

are summarized in Table 1.  

Table 1: Analysis of circuit depths for proposed C2Q methods. 

 

For method 1, the proposed 𝑈𝑈𝐶𝐶2𝑄𝑄−1 circuit in Fig. 10 consists of four uniformly-controlled 

operations. Each operation has 𝑛𝑛 − 1 controls, therefore, there are 2𝑖𝑖−1 combinations in each 

uniformly-controlled operation and depth of each is 2𝑖𝑖−1. The total depth for complex data is 

4 × 2𝑖𝑖−1 + 1 = 2𝑖𝑖+1 + 1 with the additional level for the 𝐻𝐻 gates, as shown in Table 1. For 

positive real data, the uniformly-controlled global phase and 𝑅𝑅𝑍𝑍 operations are not required, i.e., 

𝑅𝑅𝑍𝑍 becomes identity matrix, and therefore the total depth is reduced to 2 × 2𝑖𝑖−1 + 1 = 2𝑖𝑖 + 1. If 

we consider decomposing the circuits into primitive 2-qubit CNOT and 1-qubit rotation gates, then 

each uniformly-controlled 𝑅𝑅𝑦𝑦 or 𝑅𝑅𝑧𝑧 operation can be decomposed into 2𝑖𝑖 CNOTs and rotations. 

For this analysis, we denote the depth of the uniformly-controlled global scale and phase 

operations as 𝜒𝜒𝐻𝐻 and 𝜒𝜒𝑜𝑜. Therefore, for the 𝑈𝑈𝐶𝐶2𝑄𝑄−1 circuit in Fig. 10, the total depth for complex 

data is 2 × 2𝑖𝑖 + 𝜒𝜒𝐻𝐻 + 𝜒𝜒𝑜𝑜 + 1, see Table 1. For positive real data, the total depth is reduced to 2𝑖𝑖 +

𝜒𝜒𝐻𝐻 + 1, see Table 1. 
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For method 2, the proposed 𝑈𝑈𝐶𝐶2𝑄𝑄−2 circuit in Fig. 12 consists of 𝑛𝑛 × 𝑈𝑈𝑗𝑗 operations each having 

(𝑛𝑛 − 𝑗𝑗 − 1) control qubits. The final block 𝑈𝑈0 contains three uniformly-controlled operations, each 

of depth 2𝑖𝑖−1. The total depth can be derived as 1 + 21 + 22 + ⋯+ 2𝑖𝑖−1 + 2 × 2𝑖𝑖−1 = 2𝑖𝑖+1 −

1. For positive real data, the reduced depth is 2𝑖𝑖 − 1. For analysis with primitive gates, we denote 

the depth of uniformly-controlled global scale and phase operations as 𝜒𝜒𝐻𝐻 and 𝜒𝜒𝑜𝑜 as before. The 

decomposition of each 𝑈𝑈𝑗𝑗 into primitive gates is 2𝑖𝑖−𝑗𝑗. Therefore, the total depth is derived as 1 +

21 + 22 + ⋯+ 2𝑖𝑖−1 + (2𝑖𝑖 + 2𝑖𝑖 − 2 + 𝜒𝜒𝑜𝑜) = 2𝑖𝑖+1 + 2𝑖𝑖 + 𝜒𝜒𝑜𝑜 − 3, see Table 1. For positive real 

data, the reduced depth is 2𝑖𝑖+1 − 3, see Table 1. 

We analyzed the complexities of the methods presented in prior works related to arbitrary state 

synthesis. A quantitative comparison of those methods with our proposed C2Q methods, in terms 

of the theoretical circuit depth, is shown in Table 2. In general, the previous methods proposed 

using uniformly controlled rotation operations to recursively disentangle each qubit, which results 

in larger gate count and depth. Our proposed methods result in reduction of circuit depth by at least 

a factor of two, see Table 2. 

Table 2: Comparison of C2Q methods in terms of circuit depth. 

Method Circuit Depth 

Mottonen [46], 2004 2𝑖𝑖+2 − 6 

Shende [19], 2006 2𝑖𝑖+2 + 2𝑛𝑛 

Niemann [47], 2016 2𝑖𝑖+2 + 3𝑛𝑛 − 8 

Proposed C2Q Method 1 2𝑖𝑖+1 + 1 

Proposed C2Q Method 2 2𝑖𝑖+1 − 1 
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3.3 Hardware Architectures for Emulating Classical-to-Quantum Encoding 

 
(a) System architecture for emulation of quantum algorithms integrated with C2Q. 

 

 
(b) Kernel architecture for C2Q-1  

 
Fig. 13: Hardware architectures for emulating C2Q data encoding. 

 
To evaluate the proposed C2Q methods and corresponding circuits, a hardware-based 

emulation model is proposed, and the hardware system architecture is shown in Fig. 13(a). The 

emulation model consists of two components: modeling C2Q data encoding, and modeling a 

quantum algorithm. These components are modeled in the architecture as reconfigurable hardware 

kernels, kernel_c2q and kernel_qa respectively, see Fig. 13. The sets of input parameters, 

𝜃𝜃𝑗𝑗 ,𝜙𝜙𝑗𝑗 , 𝑟𝑟𝑗𝑗 , 𝑞𝑞𝑗𝑗 where 𝑗𝑗 = 0, 1, 2, … , 𝑁𝑁
2
− 1,  and input/output state vectors |𝜓𝜓𝑖𝑖𝑖𝑖⟩, |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ are stored in 

the on-board memory and transferred to the kernel reconfigurable regions during computation. 32-

bit floating point precision is used for storage and computation. The host machine controls memory 
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transfers and kernel execution commands. In this emulation model, the kernel_c2q is executed 

first, which operates on the input parameters and synthesizes the input quantum state |𝜓𝜓𝑖𝑖𝑖𝑖⟩. The 

parameter extraction from given data set is done by the host machine. The input quantum state 

vector is then transferred to the kernel_qa which performs the operations of the quantum algorithm 

and produces an output state vector |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ that is stored in the on-board memory. The hardware 

architecture of kernel_c2q is presented in Fig. 13(b) which emulates the operation of the proposed 

method 1 for C2Q, see Fig. 10. This architecture synthesizes the 𝑗𝑗𝑜𝑜ℎ pair of complex coefficients 

from input parameters 𝜃𝜃𝑗𝑗 ,𝜙𝜙𝑗𝑗 , 𝑟𝑟𝑗𝑗 , 𝑞𝑞𝑗𝑗.  

The proposed hardware architecture focuses on ease-of-use and maximizing scalability of the 

emulation. As state vectors are stored in the on-board memory, it allows emulation of larger 

quantum circuits and algorithms. On the other hand, I/O between the FPGA and memory can cause 

degradation of emulation speed. Faster emulation can be traded off for less memory space by 

storing the state vectors in the FPGA on-chip memories and directly buffering the vectors between 

the kernels. The latter method, however, results in a larger and more complex architecture that 

requires strict synchronization between hardware kernels. 
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Chapter 4: Quantum Algorithm Emulation 

To emulate behavior of quantum algorithms, we investigated and developed different 

emulation models and techniques. We analyze the area and speed trade-offs for each model and 

discuss the advantages and disadvantages of the underlying techniques used.  

4.1 Gate-based Emulation Model 

Our primary objective was to develop a gate-based, modular framework which can be easily 

re-used for emulating large-scale quantum algorithms. The framework consists of a library of 

components of single qubit gates, e.g., Hadamard, Pauli X, Pauli Z, etc. [11], and multi qubit gates, 

e.g., CNOT, SWAP, Controlled Phase Gate, etc. [11]. In modeling qubits, we used the data 

structure shown in Fig. 14, where 𝛼𝛼 and 𝛽𝛽 are complex coefficients. To build an accurate emulator 

that matches the precision of software simulators, we use 32-bit floating-point numbers in our 

calculations to represent the real and imaginary components of each complex coefficient. 

𝛼𝛼𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(32-bit) 𝛼𝛼𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(32-bit) 𝛽𝛽𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(32-bit) 𝛽𝛽𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(32-bit) 

Fig. 14: Data structure for storing information for a single qubit. 

4.1.1 Modeling Quantum Gates 

To demonstrate our modeling approach, we take the H gate as an example. The matrix 

representation of the H gate is given in Fig. 3 and the vector representation of a qubit is given in 

(2). The operation of the H gate on a qubit can be defined by matrix multiplication as described in 

(19). 

 

The H gate component is provided two 128-bit data bus for input and output respectively, as shown 

in Fig. 15(a). The dataflow operations for the H gate is shown in Fig. 15(b). The component 

performs unpacking operations to extract the real and imaginary parts of the coefficients from the 

1
√2

�1 1
1 −1� . �

 𝛼𝛼 
𝛽𝛽 � =  

1
√2

�𝛼𝛼 + 𝛽𝛽
𝛼𝛼 − 𝛽𝛽� (19) 
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data bus. It then performs the necessary math operations on the real and imaginary components, in 

this case, four additions and four multiplications. It finally performs packing operations to prepare 

the output data in the same format and sends it out via the output bus. This structure has been used 

as a template for creating components for other quantum gates. 

 

 
(a) H gate component (b) Dataflow model for H gate 

Fig. 15: Emulating Hadamard (H) gate. 

 

4.1.2 Modeling Tensor Operations 

To model quantum operations, we also need components representing tensor operations. For 

example, for the tensor operation shown in Fig. 16(a) for 3 qubits, the corresponding hardware 

design is shown in Fig. 16(b). The 𝐼𝐼 ⊗  𝐼𝐼 ⊗  𝐻𝐻 operation, defined by an 8 × 8 matrix, is a 

transformation on the coefficients, which are represented as a state vector, of any quantum state. 

Hence the component for this operation will take 8 complex coefficients as input and produce 8 

complex output coefficients. To accommodate this many coefficients, four 128-bit data buses are 

used as inputs and outputs. Accordingly, from the transformation matrix, see Fig. 16(a), the 

dataflow model is derived as shown in Fig. 16(c). 



41 
 

 

𝐼𝐼 ⊗  𝐼𝐼 ⊗  𝐻𝐻 = 

1
√2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

  

(a) Transformation on entangled 
qubits represented as a tensor 
product. 

(b) Component for tensor 
operation I ⊗ I ⊗ H 

(c) Dataflow model for I ⊗ I ⊗ H  
operation 

Fig. 16: Emulating tensor operations. 

 

4.1.3 Modeling Quantum Circuits 

The size of the equivalent hardware model of a quantum circuit will grow exponentially with 

the increase in the number of qubits [29]. Hence, we can only emulate a limited number of qubits 

using a single FPGA. In our work, we have used full 32-bit floating-point precision which 

increases the resource consumption on the FPGA compared to previous fixed-point 

implementations [27] [39] [28], [29] [30]. If there is no scope of further design optimization, then 

to improve scalability of the design, the resources can be distributed among multiple FPGA nodes. 

The design model is partitioned, and data can be passed between partitioned systems or nodes via 

a low-latency and high-bandwidth network, as shown in Fig. 17. A number of reconfigurable nodes 
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can be stacked according to the requirements and size of the model. We discuss modeling of a 5-

qubit QFT circuit in order to demonstrate this approach. 

 

 
𝑇𝑇1 = 𝐻𝐻 ⊗  𝐼𝐼 ⊗  𝐼𝐼 ⊗  𝐼𝐼 ⊗  𝐼𝐼                                         
 𝑇𝑇2 =  𝐶𝐶𝑅𝑅2 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼                                                   

   𝑇𝑇3 = (𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗  𝐼𝐼 ⊗ 𝐼𝐼 ). (𝐶𝐶𝑅𝑅3 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ).          
(𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗  𝐼𝐼 ⊗ 𝐼𝐼 )

  𝑇𝑇4 = (𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ). (𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ).           
(𝐶𝐶𝑅𝑅4 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ). (𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼).

 (𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼)                   
𝑇𝑇5 = (𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆). (𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ).          

(𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ). (𝐶𝐶𝑅𝑅5 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ).
(𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ). (𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆)  

 

Fig. 17: Hardware architecture for design 
space sharing. 

Fig. 18: Modeling a 5-qubit Quantum Fourier 
Transform circuit using tensor operations. 

 

Fig. 18 shows the quantum circuit for 5-qubit QFT. Derivation of the QFT circuit can be found 

among previous works [28] [29] [30]. The circuit consists of Hadamard gates (H), Controlled-

Phase shift gates (CR2, CR3, CR4, and CR5) and SWAP gates (SW) [24]. The H gate puts the qubit 

in a superposition state. The CR2, CR3, CR4, and CR5 gates shift the phase of the qubit by 𝜋𝜋
2

, 𝜋𝜋
4

, 𝜋𝜋
8
, 

and 𝜋𝜋
16

 respectively, depending on the control qubit. The SW gate simply swaps the coefficients of 

two qubits. According to the gate-based quantum computing approach, the circuit can be modeled 

as a series of transformations. The first five transformations are shown in Fig. 18. It should be 

noted that for T3, T4, and T5, additional SW gate operations are required to enable controlled-

phase shift operations on adjacent qubits [28]. To model this circuit for hardware, the tensor 

components designed in our library are used to build a dataflow model representing the series of 
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transformations. Once a complete dataflow model consisting of multi components is developed, it 

can be conveniently split into necessary number of partitions for implementation on the multi-node 

architecture in Fig. 17. Fig. 19 shows the dataflow model for 5-qubit QFT split into three partitions 

for a tentative three-node architecture. 

 
Fig. 19: Space-shared (partitioned) hardware models for 5-qubit QFT circuit. 

For the case of quantum circuits such as QFT, there is limited scope of design optimization 

and resource sharing as each part of the circuit has a different set of operations relative to each 

other. In other words, QFT is not inherently regular or uniform in terms of hardware structures 

among temporal evaluation iterations. Therefore, it is not possible to exploit or apply temporal 

resource sharing for QFT. However, for the case of Grover’s search algorithm, the algorithm 

consists of multiple iterations of the same set of circuit operations. Hence, it is possible and 

essential to make use of both space and time-sharing techniques in order to minimize resource 

utilization for the design of larger-scale hardware models of Grover’s algorithm while also 
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maximizing its throughput. In general, we design a hardware architecture for modeling quantum 

circuits that require temporal iterations of one or more functions. This is illustrated in Fig. 20 for 

a generic algorithm that consists of more than one function or stage. 

 

Fig. 20: Hardware architecture for space-time sharing. 

To elaborate the working concept of the architecture we take the example of Grover’s search 

algorithm. As discussed in Chapter II, Grover’s search algorithm consists of two prime stages 

which are repeated for √𝑁𝑁 iterations to reach the solution. The stages phase inversion and inversion 

about mean are mapped to function_A and function_B respectively, see Fig. 5 and Fig. 20. The 

input data to the circuit is selected by a multiplexer between source_1, which is the external input, 

and source_2, which is the feedback from the output of a previous iteration of evaluation. The 

select signal to the multiplexer comes from a comparator that compares an iteration variable 𝑖𝑖 (that 

is incremented every clock cycle) to 0 or 1. This is done to ensure that function_A will accept input 

from source_1 during the first two clock cycles of every iteration cycle, while for other values of 

𝑖𝑖, the input will come from source_2. This technique of non-linear pipelining ensures that at each 

clock cycle both stages are doing useful work, thus maximizing throughput and pipeline efficiency 

[50]. This is illustrated by the function reservation table [50] shown in Table 3. As shown in Table 

3, in the first clock cycle, Cycle1, function_A takes data D1* from source_1 while function_B is 
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idle. In the next cycle Cycle2, function_B processes D1 from function_A, while function_A accepts 

a new set of data, D2*. From each cycle onwards, the two stages continue to work these sets of 

data until the number of iterations required by the algorithm is completed. Here it is assumed that 

each iteration is equivalent to two clock cycles for each stage. 

Table 3: Reservation Table of Non-Linear Pipelined Architecture 
 Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 

function_A D1* D2* D1 D2 D1 D2 D3* 

function_B  D1 D2 D1 D2 D1 D2 

 iteration 0 (D1) iteration 1 (D1) iteration 2 (D1) … 

 

In modeling the stages of Grover’s circuit, we propose using a hybrid approach. We model the 

oracle function using pure quantum gates, while the Grover diffusion function is modeled using 

arithmetic functions. This hybrid approach ensures true quantum behavior is emulated in the oracle 

search function while significant computational resources are saved in using the arithmetic model 

for the diffusion function. Fig. 21(a) shows a quantum gate-based oracle circuit for detecting the 

binary string “11111”. We develop the equivalent hardware model using components as shown in 

Fig. 21(b). The quantum gates used in this model are H gates and a quadruple controlled NOT 

(CCCCNOT) gate derived from a triply controlled Not (CCCNOT) gate [51]. We choose the gate 

or component-based design approach for the oracle function so that it can be conveniently modified 

for detecting different patterns for other functions. Fig. 21(c) shows the data flow model of the 

inversion about mean stage, otherwise known as the Grover diffusion function. The design is 

parameterized by the number of qubits n. 𝛼𝛼1to 𝛼𝛼𝑁𝑁 are the complex coefficients of the qubits of the 

system, where N = 2n. The model operation consists of summing the complex coefficients and right-

shifting the sum by n-1 bits to obtain 2𝜇𝜇, where 𝜇𝜇 is the mean. The final part of the transformation 
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is 2𝜇𝜇 − 𝛼𝛼𝑖𝑖, see Fig. 4. The design depth is determined by N while the design width remains 

unchanged for any number of qubits. 

 
 

(a) Oracle circuit for detecting “11111”. 
 

(b) Component-level view of oracle hardware model 
 

 
(c) Data flow for implementing Grover diffusion function. 

 
Fig. 21: Hardware models for 5-qubit Grover’s search algorithm. 

 

4.2 CMAC-based Emulation Model 

The gate-based emulation model results in low scalability, as the hardware resource utilization 

increases exponentially with circuit size, i.e., number of qubits and number of stages (cascaded 

gates). We investigated and developed a more scalable, generalized emulation model that is 

optimized in terms of resource utilization and emulation time. A quantum algorithm is a series of 

transformations on the entangled quantum state of the qubits. The series of transformations can be 

represented as a single unitary complex-valued matrix, 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴 [16]. An input quantum state, |𝜓𝜓𝑖𝑖𝑖𝑖⟩, 
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can be represented by a state vector comprising of the complex coefficients of the basis states of 

the quantum state. A complex vector-matrix multiplication of the input vector with the algorithm 

matrix produces the output quantum state vector, |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩, whose coefficients represent the basis 

states of the output quantum state. We use this approach, illustrated in Fig. 22, as a model for 

designing hardware architectures for the proposed quantum emulation framework. This model is 

generalized and can be used to emulate any quantum algorithm/circuit that can be reduced to a 

single unitary operation, i.e., the transformation matrix can be pre-computed (lookup) generated 

dynamically, or streamed in from an external memory source. 

 
 

Fig. 22: CMAC-based emulation model 

By reducing the algorithm/circuit to a single transformation and performing the necessary 

vector-matrix product, the corresponding hardware implementation becomes independent of the 

circuit depth, resulting in a space- and time-efficient emulation architecture. This methodology 

assumes that the algorithm matrix is known and pre-computed, or can be dynamically generated. 

A limitation of this methodology is that for some algorithms, pre-computing and storing the 

algorithm matrix may not be feasible as the matrix dynamically changes with the algorithm input, 

for example, Shor’s algorithm [4]. Dynamically generating the matrix is also difficult for 
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algorithms with no pattern in the matrix elements, but it is certainly doable. To mitigate the 

limitations of pre-computing or dynamically generating the matrix and account for dynamically 

changing algorithm inputs and matrices, we incorporate data streaming techniques for emulation 

as elaborated in the next sections. 

4.2.1 CMAC Architectures 

To implement complex-valued vector-matrix multiplications on hardware (FPGA), we use a 

generic complex multiply-and-accumulate (CMAC) unit, as shown in Fig. 23. The inputs of the 

unit are complex values, i.e., elements of the input state vector, |𝜓𝜓𝑖𝑖𝑖𝑖(𝑗𝑗)⟩, and of the algorithm 

matrix, 𝑈𝑈𝑖𝑖,𝑗𝑗. The complex values are represented using 64 bits, with 32 floating-point bits for each 

of the real and imaginary parts. The benefit of using a CMAC is that different computation 

techniques, each with space and time trade-offs, can be applied during computation. To operate on 

complex values, the internal components of the CMAC (such as the multiplier and adder) have 

been designed for complex operations. The CMAC operations are described in (20). One CMAC 

unit performs, in total, four multiplications and four additions, see Fig. 23. 

 
 

Fig. 23: Complex multiply-and-accumulate unit. 
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𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑖𝑖) = �𝑅𝑅𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑖𝑖, 𝑗𝑗)
𝑁𝑁−1

𝑗𝑗=0

 

𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑖𝑖) = �𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑖𝑖, 𝑗𝑗)

𝑁𝑁−1

𝑗𝑗=0

 

(20) 

where, 
𝑖𝑖 = 0,1,2, … , (𝑁𝑁 − 1) 

𝑅𝑅𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑖𝑖, 𝑗𝑗) = �𝜓𝜓𝑖𝑖𝑖𝑖𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑗𝑗) × 𝑈𝑈𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑖𝑖, 𝑗𝑗)� − �𝜓𝜓𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑗𝑗) × 𝑈𝑈𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑖𝑖, 𝑗𝑗)� , and 

𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑖𝑖, 𝑗𝑗) = �𝜓𝜓𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑗𝑗) × 𝑈𝑈𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑖𝑖, 𝑗𝑗)� + �𝜓𝜓𝑖𝑖𝑖𝑖𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑗𝑗) × 𝑈𝑈𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑖𝑖, 𝑗𝑗)� 

 
We explored different hardware architectures, as listed in Table 4, by varying the number of 

CMAC instances. The purpose of this design space exploration was to implement either fully 

resource-optimized or fully latency-optimized designs to find an optimized CMAC configuration 

for developing a scalable hardware emulation framework. Space and time complexities for these 

architectures are also summarized in Table 4. 

Table 4: Space and Time Complexities of CMAC Architectures 

CMAC Architecture Complexity 
Space (𝑶𝑶𝒔𝒔) Time (𝑶𝑶𝒕𝒕) 

Single 𝑂𝑂(1) 𝑂𝑂(𝑁𝑁2) 
𝑁𝑁-concurrent 𝑂𝑂(𝑁𝑁) 𝑂𝑂(𝑁𝑁) 

Dual-sequential 𝑂𝑂(1) 𝑂𝑂(𝑁𝑁2) 
 

Single-CMAC Architecture: For a fully resource-optimized design, we instantiate only one CMAC 

unit and feed it with one algorithm matrix element and one input quantum state vector element for 

each clock cycle. This is repeated for all 𝑁𝑁2 items in the 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴 matrix. For this architecture, the 

time complexity is 𝑂𝑂(𝑁𝑁2), as shown in (21), where 𝑇𝑇𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 is the clock period. The hardware takes 

𝑁𝑁 cycles to store each input coefficient and 𝑁𝑁2 cycles to process each element of the algorithm 

matrix, in addition to some initial latency 𝐿𝐿1. The space complexity is 𝑂𝑂(1), as shown in (22), 

since a single CMAC instance is being used. 

𝑂𝑂𝑜𝑜𝑖𝑖𝑖𝑖𝑝𝑝 = (𝐿𝐿1 + 𝑁𝑁 + 𝑁𝑁2) × 𝑇𝑇𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 = 𝑂𝑂(𝑁𝑁2) (21) 
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𝑂𝑂𝑑𝑑𝑝𝑝𝐻𝐻𝑏𝑏𝑝𝑝 = 1 × 𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶 = 𝑂𝑂(1) (22) 

N-Concurrent-CMAC Architecture: In a fully parallel implementation, 𝑁𝑁 CMAC instances are 

used to operate concurrently, for processing each row of the 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴 matrix. The time complexity of 

this design, as shown in (23), is effectively 𝑂𝑂(𝑁𝑁) as it takes 𝑁𝑁 cycles to store the input states, and 

𝑁𝑁 more cycles to concurrently process all 𝑁𝑁 rows of the algorithm matrix, along with initial 

latency 𝐿𝐿2. The space complexity now becomes 𝑂𝑂(𝑁𝑁), due to the 𝑁𝑁 instances of CMAC units, as 

shown in (24).  

𝑂𝑂𝑜𝑜𝑖𝑖𝑖𝑖𝑝𝑝 = (𝐿𝐿2 + 2𝑁𝑁) × 𝑇𝑇𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 = 𝑂𝑂(𝑁𝑁) (23) 

𝑂𝑂𝑑𝑑𝑝𝑝𝐻𝐻𝑏𝑏𝑝𝑝 = 𝑁𝑁 × 𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶𝑠𝑠 = 𝑂𝑂(𝑁𝑁) (24) 

Dual-sequential-CMAC Architecture: In this implementation, two CMAC instances are utilized 

sequentially. After the initial latency 𝐿𝐿3, the first CMAC processes the first row of the matrix while 

the input vector is being stored, and the second CMAC instance continues the subsequent 

processing of the remaining rows using the stored inputs. This implementation has double the 

resource requirements of the first architecture but has the benefit of improvement in execution 

time. The time complexity is determined as in (25) and the space complexity is given by (26). 

𝑂𝑂𝑜𝑜𝑖𝑖𝑖𝑖𝑝𝑝 = (𝐿𝐿3 + 𝑁𝑁2 − 1) × 𝑇𝑇𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 = 𝑂𝑂(𝑁𝑁2) (25) 

𝑂𝑂𝑑𝑑𝑝𝑝𝐻𝐻𝑏𝑏𝑝𝑝 = 2 × 𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶𝑠𝑠 = 𝑂𝑂(1) (26) 

4.2.1 CMAC Computation Techniques 

To investigate trade-offs in area and speed of the emulator, we leverage three computation 

techniques: lookup, dynamic generation, and data streaming, and apply them for the CMAC 

architecture. Benefits and drawbacks of each technique along with memory consumption analysis 

is discussed in the following sections. 
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Lookup-based CMAC: Look-up-tables (LUTs) simplify hardware design by replacing complex 

parts of computation with simple array-indexed operations. It is generally implemented as an array 

in memory that stores pre-calculated values which results in low resource requirements. In the 

CMAC architecture, we use the process of lookup to fetch pre-computed algorithm matrix values 

from memory during complex computation operations. A limitation of this technique is that for 

some algorithms, the algorithm matrix changes dynamically with the inputs, hence this method 

will not be feasible in those cases. We combine this lookup approach with the dual-sequential-

CMAC architecture  to optimize the design in terms of speed. The total memory, 𝑀𝑀𝐴𝐴, required 

using this combination is derived in (27), assuming 32-bit floating point numbers are used for each 

real and imaginary component of the complex matrix and vector elements. 

𝑀𝑀𝐴𝐴 = 𝑀𝑀𝑣𝑣𝑝𝑝𝑏𝑏 + 𝑀𝑀𝑖𝑖𝐻𝐻𝑜𝑜 = 8𝑁𝑁 + 8𝑁𝑁2 = 2𝑖𝑖+3 + 22𝑖𝑖+3 (27) 

Dynamic Generation-based CMAC: The lookup approach is optimized for speed, but storing the 

algorithm matrix consumes resources that increase exponentially with circuit size. For resource 

utilization optimization and improved scalability, we propose integrating the dual-sequential-

CMAC architecture with a dynamic approach that involves generating the algorithm matrix values 

at runtime, storing only input vectors in memory. The advantage of this method is that it 

significantly reduces the total memory utilization, 𝑀𝑀𝐷𝐷𝐴𝐴 of the simulation, as shown in  (28). The 

algorithm matrix 𝑈𝑈𝑄𝑄𝑄𝑄𝑄𝑄, see Fig. 4, is generated as part of the architecture using dedicated hardware 

units as shown in Fig. 24. The operations of this architecture are summarized in (29). 

𝑀𝑀𝐷𝐷𝐴𝐴 = 𝑀𝑀𝑣𝑣𝑝𝑝𝑏𝑏 = 8𝑁𝑁 = 2𝑖𝑖+3 (28) 
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Fig. 24: Hardware architecture for dynamic generation of the QFT algorithm matrix 

 

𝑅𝑅(𝑖𝑖) = 𝑅𝑅(𝑖𝑖 − 1) ∙ 𝜔𝜔 
𝑈𝑈(𝑖𝑖, 𝑗𝑗) = 𝑈𝑈(𝑖𝑖, 𝑗𝑗 − 1) ∙ 𝑅𝑅(𝑖𝑖) 

(29) 

where, 

𝜔𝜔 = 𝑒𝑒�̂�𝚤
2𝜋𝜋
𝑁𝑁 = cos �

2𝜋𝜋
𝑁𝑁 � + 𝚤𝚤̂ ∙ sin �

2𝜋𝜋
𝑁𝑁 � , 

𝑖𝑖, 𝑗𝑗 = 0 →𝑁𝑁 − 1, 

and  𝑅𝑅(0) = 1, 𝑈𝑈(0,0) = 1 

The drawback of this technique is that the dynamic generation hardware can introduce pipeline 

latencies depending on the complexity of the algorithm, degrading the speed of the overall 

emulation. Furthermore, designing a dedicated hardware generation unit also requires us to find 

and exploit some pattern in the algorithm matrix, which might not be possible in every case. 

Generally, it is hard to efficiently generate the matrix values if the algorithm matrix doesn’t have 

a special structure, therefore the generation hardware would be complex, and the approach may 

not be feasible for particular algorithms. 

Stream-based CMAC: While the lookup approach improves speed, it sacrifices area, and similarly, 

while dynamic generation improves area, it sacrifices speed. We investigate a more optimal 

approach that sustains both speed and area improvements and improves scalability and latency of 
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the emulator. Instead of being stored into on-chip resources (OCR) or on-board memory (OBM), 

or dynamically generated during computation, the algorithm matrix elements are streamed in 

during computation as an input stream from an external control processor. The cost of streaming 

is typically the I/O channel latency between the control processor and the FPGA, which is 

negligible relative to the compute time necessary for processing the algorithm matrix. The 

contribution of this technique is that it greatly reduces the constraint on memory requirement 

compared to the lookup-based technique, while also avoiding the hardware cost and bottleneck of 

using the dynamic generation technique. As a result, a significantly higher number of qubits can 

be emulated on the same FPGA area. The total memory requirement, 𝑀𝑀𝑆𝑆, using this method is 

equivalent to 𝑀𝑀𝐷𝐷𝐴𝐴 and shown in (30). The top-level view of the emulator design using the data 

streaming technique is shown in Fig. 25. 

𝑀𝑀𝑆𝑆 = 𝑀𝑀𝐷𝐷𝐴𝐴 = 𝑀𝑀𝑣𝑣𝑝𝑝𝑏𝑏 = 8𝑁𝑁 = 2𝑖𝑖+3 (30) 

 
 

Fig. 25: Architecture of the stream-based CMAC quantum emulator. 

4.3 Kernel-based Emulation Model 

While the CMAC emulation model is suitable for modeling dense algorithm matrices, a faster, 

kernel-based model can be applied for more sparse matrices that involve a repeated set of core 

operations. The core operations are modeled as a kernel using either quantum gates or classical 

logic/arithmetic. The total input states are divided into groups and the kernel operation is applied 
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iteratively across all groups, one group every clock cycle. The hardware model for emulation using 

this approach is shown in Fig. 26. As an example, the one-dimensional Quantum Haar Transform 

(1D-QHT) algorithm is modeled for emulation.  

 
 

Fig. 26: Kernel-based model for quantum algorithm emulation. 

In the gate-based emulation model, QHT is emulated using Hadamard and SWAP gate models. 

Alternatively, the proposed kernel-based model can be applied in the emulation of QHT to 

significantly reduce hardware resource utilizations, hardware latencies, and improve the time-

complexity. We propose simplified hardware kernels for implementing 1D-QHT and inverse 1D-

QHT (1D-IQHT). 

𝑄𝑄𝐻𝐻𝑇𝑇1𝐷𝐷 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜1𝐷𝐷 ∙ 𝑈𝑈𝑄𝑄𝐻𝐻𝑄𝑄1𝐷𝐷 ∙ 𝑃𝑃𝑖𝑖𝑖𝑖1𝐷𝐷 
(31) 

𝐼𝐼𝑄𝑄𝐻𝐻𝑇𝑇1𝐷𝐷 = (𝑃𝑃𝑖𝑖𝑖𝑖1𝐷𝐷)−1 ∙ 𝑈𝑈𝑄𝑄𝐻𝐻𝑄𝑄1𝐷𝐷 ∙ (𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜1𝐷𝐷 )−1 

For modeling 1D-QHT, the core operation, i.e. the Haar wavelet function, represented by 𝑈𝑈𝑄𝑄𝐻𝐻𝑄𝑄1𝐷𝐷 , 

see (7e), is reduced to a common kernel operation described by 𝐻𝐻, which will be applied iteratively 

across groups of state coefficients. The Haar wavelet function is preceded and followed by 

permutations on the state coefficients as shown in (31), where 𝑃𝑃𝑖𝑖𝑖𝑖1𝐷𝐷 is a perfect shuffle permutation 
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[35] on the input states, and 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜1𝐷𝐷  is a perfect shuffle permutation operation on the output states. 

The inverse 1D-QHT operation (1D-IQHT) can be achieved by using inverse permutations, and 

the same Haar wavelet function, also shown in (31). Hardware emulation models for 1D-QHT and 

1D-IQHT are presented in Fig. 27. The steps of our proposed algorithm for 1D-QHT operation are 

elaborated in Algorithm 1 in the appendix. For emulation, we model 1D permutations for hardware 

using classical logic to save resources, instead of quantum CNOT gate models, as done in related 

works. The 1D-QHT kernel is modeled using basic arithmetic operations and integrated with the 

input and output permutations, which are modeled using dedicated input/output hardware 

schedulers, see Fig. 26. Detailed architectures of the kernel and hardware schedulers are discussed 

in later chapters.  

 
(a) Emulation model for 1D-QHT. 

 

 
(a) Emulation model for 1D-IQHT. 

 
Fig. 27: Algorithm and hardware kernel architectures for emulation of 1D-QHT. 
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Chapter 5: Quantum-to-Classical Decoding 

In this chapter, the existing approaches for Quantum-to-Classical (Q2C) data decoding are 

discussed. A new methodology for Q2C, based on using Quantum Haar Transform (QHT), is also 

proposed and discussed. 

5.1 General Approach 

In classical systems, measurement of a state is predictable and deterministic. However, in 

quantum systems, the outcome of measurement of a quantum state is unpredictable and non-

deterministic. A quantum state resides in a superposition of its basis states and measurement 

collapses the superposition and projects the quantum state to one of the basis states. For example, 

when the quantum state |𝜓𝜓⟩ described in (3) is measured, the probability of the outcome being the 

basis state |𝑖𝑖⟩ is |𝐶𝐶𝑖𝑖|2. This kind of measurement for which the result is one out of a set of basis 

states is called a von Neumann measurement [52]. In any quantum system, there are measurement 

gates which observe and project the state of a qubit or qubits onto a classical bit or register. 

Generally, to extract useful classical information, a quantum circuit is executed multiple times and 

the output is sampled for each execution by performing a measurement. The greater the number of 

measurements, the more accurate is the extracted information. 

Classica data for quantum computation is generally encoded as the set of amplitudes {𝐶𝐶𝑖𝑖} of 

the basis states |𝑖𝑖⟩. Quantum-to-Classical (Q2C) data decoding is the process of reconstructing the 

amplitudes of the final quantum state by measurement. The general approach for Q2C is to 

determine the set of probabilities {|𝐶𝐶𝑖𝑖|2} of measuring the basis states |𝑖𝑖⟩, from which the set of 

amplitudes {𝐶𝐶𝑖𝑖} can be obtained. The quantum circuit is iteratively sampled multiple times, and 

the basis state outcome is measured for every iteration. The frequency of occurrence of each basis 
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state is recorded and using that count, a probability distribution or a histogram is constructed. The 

basis state amplitudes can then be calculated from the probability distribution.  

In applications such as quantum image processing, decoding image data from the final 

quantum state requires high number of samples or iterations of the quantum circuit. Usually, the 

number of iterations required to accurately recover the image data is in the range of thousand 

samples. Performing a large number of circuit executions introduces significant overhead and has 

an adverse effect on the execution time. In addition, the accuracy or fidelity of the reconstructed 

amplitudes is low due to statistical errors that arise as a result of the finite number of 

measurements/sampling of the non-deterministic outcomes of the quantum system. 

5.2 Quantum-to-Classical Decoding Using Quantum Fourier Transform  

An alternative approach to Q2C data decoding for image processing applications was proposed 

in [16]. Instead of reconstructing all the amplitudes from the quantum state, the proposed approach 

was extracting a collective property from the amplitudes stored in the quantum state. For example 

in classical image processing, one can obtain useful information about any image by applying 

Fourier transform and projecting it in the frequency domain. Similarly, in quantum image 

processing, by applying the quantum Fourier transform (QFT) we can observe the frequency 

components of an image, without having to measure all the pixel data. For example, consider an 

image represented as a one-dimensional time series of pixels and encoded as the amplitudes of a 

quantum state. A QFT circuit is applied and then the output is measured. It is likely that the 

resulting basis state outcome will correspond to a peak in the Fourier transformed image. This 

suggests that the corresponding frequency component is strongly represented in the Fourier 

transform of the image [16]. For specific image processing applications, this measurement in the 

Fourier bases gives us information about properties of the transformed image without having to 
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decode the actual image pixels. The number of iterations/samples of the quantum circuit will be 

relatively less than those required in the general approach, as we are no longer reconstructing the 

exact and complete probability distribution, but are only interested in measuring the Fourier 

transformed basis states. The QFT-based methodology for Q2C decoding is illustrated in Fig. 28.  

 
Fig. 28: Methodology overview for QFT-based quantum-to-classical data decoding 

In this methodology, the output of a quantum algorithm/circuit, represented by 𝑛𝑛 qubits, is passed 

through a QFT circuit. The quantum circuit for 𝑛𝑛-qubit QFT is shown in Fig. 4. The QFT changes 

the basis of the qubits to the Fourier bases, and the amplitudes of the basis states represent data in 

the frequency domain. The QFT output is passed to a measurement unit that repeats the circuit 

execution for a specified number of iterations, samples the output for every iteration, and produces 

a probability distribution. From the probability distribution, the basis states with the highest 

probabilities correspond to the frequency components present in the Fourier transformed data. The 

QFT-based method for Q2C data decoding is particularly interesting for applications involving 

image or audio processing, where properties of the data such as frequency content and/or 

bandwidth are useful for analyzing the output. The drawback of this method is that it does not 

decode the actual data encoded in the quantum state, but only reveals a collective property or 

feature of the data. 
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5.3 Quantum-to-Classical Decoding Using Quantum Haar Transform  

An important feature of the Quantum Haar Transform (QHT) is that it preserves the spatial and 

temporal locality of data. In addition, QHT is also decomposable for multiple levels. These features 

make QHT an effective tool for dimension reduction, which is the process of reducing the number 

of features of a data set while retaining some form of spatial and/or temporal variation [49]. We 

propose a methodology for Q2C data decoding that incorporates use of the QHT algorithm and 

dimension reduction. By applying multi-level decomposable QHT, data represented by 𝑛𝑛 qubits 

can be transformed to data represented by a lower number of qubits 𝑘𝑘 = (𝑛𝑛 − 𝑙𝑙 ∙ 𝑑𝑑), where 𝑘𝑘 < 𝑛𝑛, 

𝑙𝑙 is the number of decomposition levels, and 𝑑𝑑 is the dimensionality of the data. The objective of 

performing dimension reduction by QHT is to use less qubits to represent the data and therefore 

reduce the time taken during measurement while maintaining higher fidelity. Fig. 29 shows the 

proposed methodology for QHT-based Q2C data decoding.  

 

Fig. 29: Methodology overview for QHT-based quantum-to-classical data decoding 

In our proposed methodology, QHT is applied to the output of a quantum algorithm, 

represented by n qubits. The QHT algorithm splits the data into bands with low and high 

frequencies. For example, a one-level two-dimensional (2D) QHT splits the data into four 

frequency quadrants: low-low (LL), low-high (LH), high-low (HL), and high-high (HH). The 

spectrum density of the LL frequency components is higher compared to the others, and contains 
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the most relevant and useful information that approximates the original data. At the output of the 

QHT circuit, the 𝑘𝑘 qubits representing the low frequency bands are measured. It should be noted 

that dimension reduction reduces features of the data, so the amplitudes decoded from the 𝑘𝑘 qubits 

will not be the exact amplitudes represented by the original 𝑛𝑛 qubits. However, the data will retain 

its spatial and/or temporal locality and will have resemblance in structure with the original data. 

The proposed QHT-based method for Q2C data decoding will be useful in applications such as 

quantum image processing for efficiently visualizing transformed images. 
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Chapter 6: Proposed Use Cases 

In this chapter, we propose three use cases of quantum algorithms such as Quantum Wavelet (Haar) 

Transform and Quantum Grover’s search. Specifically, we propose dimension reduction using 

multi-level multi-dimensional Quantum Haar Transform (QHT) and present the corresponding 

depth optimized QHT circuits. We also propose dynamic multi-pattern search using Quantum 

Grover’s Search and present the corresponding methodology and quantum circuits. Finally a novel 

quantum application is presented: efficient Quantum Pattern Recognition based on dimension 

reduction techniques, using both Quantum Haar Transform and Quantum Grover’s Search. These 

use cases are evaluated using the proposed emulation framework and all corresponding hardware 

architectures for emulation are presented.  

6.1 Dimension Reduction using Quantum Wavelet (Haar) Transform 

Dimension reduction is a process of reducing the number of features of a data set while 

retaining some form of spatial or temporal variation from the original data set [53]. The classical 

wavelet transform (WT) has been shown to achieve dimension reduction efficiently [53] and can 

be used in various applications that use hyperspectral data, for example: remote sensing 

hyperspectral imagery, mineralogy, surveillance, etc. The WT uses a set of non-sinusoidal 

functions, usually called mother wavelets, that are both spatially and temporally localized [34]. 

This results in a very important feature unique to WT which is preservation of spatial locality of 

data. In other words, WT gives information about both time and frequency of input data. 

Depending on the type of data and the application in which this data is being used, multi-level and 

multi-dimensional WT (e.g., 1D wavelet transform (1D-WT) and 2D wavelet transform (2D-WT)) 

can be used for dimension reduction. For example, while the data in remote sensing hyperspectral 

imagery is in the form of large 3D data cubes, 1D-WT was previously proposed [53] for efficient 
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dimensionality reduction of such data cubes. In the experimental work in [33], five levels of 

wavelet decomposition were used on images of size 217 × 512 pixels by 192 bands to achieve 

× 32 reduction in data volume.  

In current and future large-scale applications, the volume of data can be overwhelming. For 

example, hyperspectral image cubes are typically hundreds of pixels in width and height [53], with 

220-240 frequency bands [33]. Hence, it is necessary to investigate and apply newer paradigms of 

information processing and storage for supporting future applications at full bandwidths. In 

quantum information processing, exponentially greater amount of information can be held in the 

state of quantum system compared to a classical binary system. Thus, we propose using quantum 

information processing techniques such as Quantum Wavelet (Haar) Transform (QHT) for the 

processing of high volumes of data in large-scale applications. In the next sections, we elaborate 

our methodology in which we propose multi-level, multi-dimensional QHT to achieve dimension 

reduction. We propose depth-optimized quantum circuits for dimension reduction using QHT and 

present the corresponding emulation hardware architectures. 

 

6.1.1 Methodology Overview 

Our proposed methodology for dimension reduction using QHT is shown in Fig. 30. Input 

image data first undergoes a 𝑑𝑑-dimensional QHT, e.g., one-dimensional QHT (1D-QHT) or two-

dimensional QHT (2D-QHT) operation. The 𝑑𝑑-dimensional QHT operations can have multiple 

decomposition levels and the input image is separated into a number of low frequency and high 

frequency replications, depending on the number of decomposition levels. The lowest frequency 

image replication retains the principal components of the input data without significant data loss. 

More importantly, the mirror images have reduced dimensionality and thus can be used for 
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reducing pre-processing overhead or communication bandwidth congestion. Multi-level multi-

dimensional inverse quantum Haar transform (e.g., 1D-IQHT or 2D-IQHT) is then applied to 

reconstruct the original data.  

 
 

Fig. 30: Dimension reduction using multi-level, multi-dimensional QHT and IQHT. 

As shown in Fig. 30, we propose performing 𝑑𝑑-dimensional QHT and IQHT operations in two 

ways: (1) Sequential QHT, i.e., by cascading 1D operations and multiple 1D permutation sets, and 

(2) Parallel QHT, i.e., applying a single 𝑑𝑑-dimensional Haar kernel. We also show that Sequential 

and Parallel QHT/IQHT circuit variants are decomposable, to perform multi-level-decomposable 

QHT/IQHT, see Fig. 30. For example, using this methodology, a 64𝐾𝐾 ×  64𝐾𝐾 image can be 

reduced to a smaller resolution of 32 ×  32 using a 32-qubit, 12-level QWT decomposition. The 

data (pixels) are encoded as the coefficients of 𝑁𝑁 basis states of a quantum state, where 𝑁𝑁 = 2𝑖𝑖 

and 𝑛𝑛 is the number of qubits, i.e., 32. The quantum circuits for performing Sequential/Parallel 

QHT and their packet/pyramid-decomposable forms are presented in the next sections, as well as 

our proposed optimizations that significantly reduce the circuit depths. The corresponding 
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algorithms and hardware architectures for emulation of multi-dimensional, multi-level QHT are 

also presented. 

6.1.2 Optimized Quantum Circuits 

We denote a general 𝑑𝑑-dimensional QHT operation as 𝑈𝑈𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄. The 𝑈𝑈𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 operation 

consists of three parts: (1) input permutations applied to the input state vector, (2) Haar-transform 

operations, and (3) output permutations applied to produce the output state vector. These 

operations are described for 1D, 2D, and 3D-QHT in Algorithms 1, 2, and 3 respectively in the 

Appendix. In the quantum domain, the Haar-transform operations are performed using d H gates. 

The input/output permutations are performed using perfect-shuffle-permutation (PSP) operations. 

PSPs are fundamental in classical signal and image processing [54]. Quantum PSPs can be 

described directly in terms of their effect on the ordering of qubits [35] [55] [56]. We present two 

quantum PSP operations that will be used in building our proposed quantum circuits, i.e., Rotate-

Left (RoL) and Rotate-Right (RoR), see (32) and (33) respectively. RoL(𝑛𝑛 − 1, 0) and RoR(𝑛𝑛 −

1, 0) operations are essentially circular (left/right) shifts of qubits. RoL/RoR can be implemented 

with networks of SWAP gates, see Fig. 31(a). The number of levels of SWAP gates required for 

RoL(𝑛𝑛 − 1, 0)/RoR(𝑛𝑛 − 1, 0) is simply 𝑛𝑛 − 1. The gate symbols we have used for RoL/RoR in 

our proposed circuits are shown in Fig. 31(a). 

𝑅𝑅𝑅𝑅𝐿𝐿(𝑛𝑛 − 1, 0): |𝑞𝑞𝑖𝑖−1𝑞𝑞𝑖𝑖−2 … 𝑞𝑞1𝑞𝑞0⟩ → |𝑞𝑞𝑖𝑖−2 … 𝑞𝑞1𝑞𝑞0𝑞𝑞𝑖𝑖−1⟩ (32) 

𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛 − 1, 0): |𝑞𝑞𝑖𝑖−1𝑞𝑞𝑖𝑖−2 … 𝑞𝑞1𝑞𝑞0⟩ → |𝑞𝑞0𝑞𝑞𝑖𝑖−1𝑞𝑞𝑖𝑖−2 … 𝑞𝑞1⟩ (33) 
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(a) Quantum circuits for Perfect Shuffle Permutations. 

 

 
(b) Optimizations for Sequential QHT. 

 

 
(c) Optimizations for Parallel QHT 

 

Fig. 31: Quantum circuits for Sequential and Parallel QHT. 
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We present two generalized circuit variants that perform the operation 𝑈𝑈𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄: Sequential 

(𝑑𝑑-stage) 𝑑𝑑-dimensional QHT, and Parallel (1-stage) 𝑑𝑑-dimensional QHT. We also present 

unoptimized and optimized circuits for each variant. The 𝑈𝑈𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 operation can be performed 

by any of the unoptimized and/or optimized circuit variants presented in Figs. 31(b) and 31(c) for 

which expressions for time-delay are also derived. We also show how the Sequential and Parallel 

circuit variants are decomposable in packet and pyramidal forms, see Figs. 32(a) and 32(b). The 

notations that have been used in the time-delay expressions are defined as: 

𝑁𝑁 ≡ Number of data samples 

𝑑𝑑 ≡ Number of data dimensions 

𝑙𝑙 ≡ Number of decomposition levels 

𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚 ≡ Maximum number of decomposition levels 

𝑁𝑁𝑖𝑖 ≡ Number of data samples in dimension i 

𝑛𝑛𝑖𝑖 = ⌈log2 𝑁𝑁𝑖𝑖⌉ ≡ Total number of qubits representing dimension 𝑖𝑖 

𝑛𝑛 = �𝑛𝑛𝑖𝑖 ≡ Total number of qubits
𝑑𝑑−1

𝑖𝑖=0

 

𝑛𝑛𝑖𝑖𝐻𝐻𝑚𝑚 = max
0 ≤ 𝑖𝑖 < 𝑑𝑑−1

(𝑛𝑛𝑖𝑖) = Maximum number of qubits across all 𝑑𝑑 dimensions 

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 ≡ min
0 ≤ 𝑖𝑖 < 𝑑𝑑−1

(𝑛𝑛𝑖𝑖) = Minimum number of qubits across all 𝑑𝑑 dimensions 

𝑙𝑙𝑏𝑏𝑜𝑜𝑑𝑑𝑑𝑑𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 = Maximum number of levels for lossless decomposition 

𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑘𝑘𝑜𝑜 = �

𝑛𝑛
𝑑𝑑
� ≡ Maximum number of levels for packet decomposition 

𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑦𝑦𝐻𝐻 = �min �

𝑛𝑛
𝑑𝑑

, 1 +
𝑛𝑛 − 𝑛𝑛0
𝑑𝑑 − 1 �

� ≡ Maximum number of levels for pyramidal decomposition 

𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 ≡ Time delay of the SWAP gate 

𝜏𝜏𝐻𝐻 ≡ Time delay of the Hadamard gate 

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏 ≡ Total time delay 

𝑈𝑈𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 ≡ Generic 𝑑𝑑-dimensional QHT operation 

𝑈𝑈𝑝𝑝𝑘𝑘𝑜𝑜,𝑏𝑏
𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 ≡ 𝑑𝑑-dimensional QHT at 𝑙𝑙 level of packet decomposition 

𝑈𝑈𝑝𝑝𝑦𝑦𝐻𝐻,𝑏𝑏
𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 ≡ 𝑑𝑑-dimensional QHT at 𝑙𝑙 level of pyramidal decomposition 

𝑈𝑈𝑝𝑝𝐻𝐻𝑏𝑏𝑘𝑘𝑝𝑝𝑜𝑜
𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 ≡ Overall 𝑑𝑑-dimensional QHT of packet decomposition 

𝑈𝑈𝑝𝑝𝑦𝑦𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑑𝑑𝐻𝐻𝑏𝑏
𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 ≡ Overall 𝑑𝑑-dimensional QHT of pyramidal decomposition 

 

(34) 
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Packet and Pyramidal decompositions 

We show that 𝑑𝑑-dimensional QHT is packet/pyramidal decomposable for 𝑙𝑙 levels. In packet 

decomposition, see Fig. 32(a), 𝑈𝑈𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 is repeatedly applied for every level on all the data 

(qubits) and all data qubits are required throughput the process. The maximum number of levels 

for packet decomposition, 𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑘𝑘𝑜𝑜  see (34), depends on the total number of qubits 𝑛𝑛 and the number 

of data dimensions 𝑑𝑑. However, for lossless decomposition, i.e., no data dimensions are lost during 

decomposition, the maximum number of levels is equal to the minimum number of qubits 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 

across all 𝑑𝑑 dimensions.  

In pyramidal decomposition, see Fig. 32(b), for each level of decomposition, the 𝑑𝑑-

dimensional QHT operates on fewer data qubits. Specifically, 𝑑𝑑 qubits (1 qubit per each 

dimension) are discarded after every decomposition level, see 31(b). Similar to packet 

decomposition, the maximum number of levels for lossless pyramidal decomposition is also 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖. 

The expression for the maximum number of possible pyramidal decomposition levels, 𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑦𝑦𝐻𝐻 , is 

given in (34). Pyramidal decomposition has certain advantages over packet in that the size and 

depth of the QHT circuit is reduced after every decomposition level. However, one drawback is 

that more inter-level permutations are required, see Fig. 32(c). The time-delay for inter-level 

pyramidal permutations could be derived using Fig. 32(c) and is given in (35). 

𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 = �𝑛𝑛 − 𝑛𝑛0 − (𝑑𝑑 − 1)
𝑙𝑙
2�

(𝑙𝑙 − 1) ∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 (35) 
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(a) Packet decomposition 
 

  

(b) Pyramidal decomposition (c) Inter-level pyramidal permutations 

  

Fig. 32: Multi-level decomposition of d-dimensional QHT. 

Sequential and Parallel QHT 

For Sequential QHT, d-dimensional QHT can be performed by cascading d 1D-QHT 

transforms, see Fig. 31(b). Each 1D-QHT, 𝑈𝑈1𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄, consists of RoL, H gates, and RoR gates, see 

Fig. 31(a). The 1D-QHT is consecutively repeated for every dimension indexed from 0 to 𝑑𝑑 − 1. 
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The (unoptimized) sequential QHT circuit could be decomposed in multi-level packet or  

pyramidal forms. The total time-delays for packet and pyramidal decompositions with 𝑙𝑙 levels is 

provided in (36). 

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑑𝑑𝑝𝑝𝑞𝑞,𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 = ��(2𝑑𝑑 − 1)𝑛𝑛 − 2�𝑖𝑖 ∙ 𝑛𝑛𝑖𝑖 − 𝑑𝑑

𝑑𝑑−1

𝑖𝑖=0

� ∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 + 𝑑𝑑 ∙ 𝜏𝜏𝐻𝐻� ∙ 𝑙𝑙 
(36) 

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑑𝑑𝑝𝑝𝑞𝑞,𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑦𝑦𝐻𝐻 = 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏

𝑑𝑑𝑝𝑝𝑞𝑞,𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 + 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 −
𝑑𝑑2 ∙ 𝑙𝑙(𝑙𝑙 − 1)

2
∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 

The d-stage sequential QHT circuit can be optimized as shown in Fig. 31(b). For each 1D-

QHT operation, the RoL operation is eliminated, and the kernel (H gate) is shifted up to its 

corresponding dimension 𝑖𝑖, where 𝑖𝑖 =  0,1, 𝐼𝐼. ,𝑑𝑑 − 1. This reduces the consecutive RoR operation 

(less depth) and thus reduces the overall circuit depth. The total time-delays for the optimized 

sequential packet and pyramidal decomposable  d-dimensional QHT circuits are given in (37). 

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑑𝑑𝑝𝑝𝑞𝑞,𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 = �(𝑛𝑛 − 𝑑𝑑) ∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 + 𝑑𝑑 ∙ 𝜏𝜏𝐻𝐻� ∙ 𝑙𝑙 

(37) 
𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑑𝑑𝑝𝑝𝑞𝑞,𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑦𝑦𝐻𝐻 = 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏

𝑑𝑑𝑝𝑝𝑞𝑞,𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 + 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 −
𝑑𝑑 ∙ 𝑙𝑙(𝑙𝑙 − 1)

2
∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 

 

In Parallel QHT the Haar operation (H gates) is applied in parallel (1-stage) instead of in 

sequence on each of the d dimensions, see Fig. 31(c). The RoR and RoL operations are grouped 

into sets of preceding and proceeding permutations respectively, see Fig. 31(c). This circuit variant 

can be used in packet or pyramidal decomposition. The total time-delays of the packet and 

pyramidal decomposable circuits are given in (38). 

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑝𝑝𝐻𝐻𝐻𝐻,𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 = ��2𝑛𝑛 − 𝑛𝑛𝑑𝑑−1 − (2𝑑𝑑 − 1)� ∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 + 𝜏𝜏𝐻𝐻� ∙ 𝑙𝑙 

(38) 
𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑝𝑝𝐻𝐻𝐻𝐻,𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑦𝑦𝐻𝐻 = 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏

𝑝𝑝𝐻𝐻𝐻𝐻,𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 + 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 −
(2𝑑𝑑 − 1) ∙ 𝑙𝑙(𝑙𝑙 − 1)

2
∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 

 

The parallel (1-stage) QHT is optimized further by positioning the H gates separated by 𝑛𝑛𝑖𝑖 

qubits, where 𝑖𝑖 =  0,1, 𝐼𝐼. ,𝑑𝑑 − 1, see Fig. 31(c). Due to this shift, no preceding permutations (RoL 

gates) are required. The proceeding RoR operations are also reduced in depth and can be applied 
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in parallel as they are independent of each other. The total time-delay for the optimized parallel 

decomposable (packet and pyramidal) d-dimensional QHT circuits is given in (39). 

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑝𝑝𝐻𝐻𝐻𝐻,𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 = �(𝑛𝑛𝑖𝑖𝐻𝐻𝑚𝑚 − 1) ∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 + 𝜏𝜏𝐻𝐻� ∙ 𝑙𝑙 

(39) 
𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑝𝑝𝐻𝐻𝐻𝐻,𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑦𝑦𝐻𝐻 = 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏

𝑝𝑝𝐻𝐻𝐻𝐻,𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 + 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 −
𝑙𝑙(𝑙𝑙 − 1)

2
∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 

 

Packet vs Pyramidal QHT 

We define the general time-delays for packet and pyramidal decomposable circuits as 𝑞𝑞𝑝𝑝𝑘𝑘𝑜𝑜 and 

𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻, irrespective of the type of QHT circuit or the optimization (serial/parallel or 

optimized/unoptimized). Therefore, a general time expression can be derived as (40) from the 

equations given in (30)-(33).  

 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻 =  𝑞𝑞𝑝𝑝𝑘𝑘𝑜𝑜 + 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 − ∆𝑞𝑞 (40) 
where, 

∆𝑞𝑞 = 𝑓𝑓(𝑑𝑑) ∙ 𝑏𝑏(𝑏𝑏−1)
2

,  and 𝑓𝑓(𝑑𝑑) =

⎩
⎨

⎧    𝑑𝑑2         → 𝑠𝑠𝑒𝑒𝑞𝑞.  𝑢𝑢𝑛𝑛𝑅𝑅𝑢𝑢𝑞𝑞 
𝑑𝑑           → 𝑠𝑠𝑒𝑒𝑞𝑞. 𝑅𝑅𝑢𝑢𝑞𝑞    

(2𝑑𝑑 − 1) → 𝑢𝑢𝑑𝑑𝑟𝑟.𝑢𝑢𝑛𝑛𝑅𝑅𝑢𝑢𝑞𝑞 
1           → 𝑢𝑢𝑑𝑑𝑟𝑟. 𝑅𝑅𝑢𝑢𝑞𝑞   

 

For pyramidal to be faster than packet, 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻 − 𝑞𝑞𝑝𝑝𝑘𝑘𝑜𝑜 ≤ 0 should be true, i.e., 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 − ∆𝑞𝑞 ≤ 0. 

Using the expression for  𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 and ∆𝑞𝑞, we can derive an expression for the minimum number 

of decomposition levels, 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑦𝑦𝐻𝐻  required for pyramidal to be faster than packet, given in (41). 

𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑦𝑦𝐻𝐻 =  

2(𝑛𝑛 − 𝑛𝑛0)
𝑓𝑓(𝑑𝑑) + 𝑑𝑑 − 1

 
(41) 

 

6.1.3 Hardware Architectures for Emulating Quantum Haar Transform 

We propose kernel-based emulation algorithms for multi-level 1D-QHT, 2D-QHT, and 3D-

QHT and they are presented in the Appendix as Algorithms 1, 2, and 3 respectively. The algorithms 

perform multi-level decompositions of 𝑑𝑑-D-QHT operations based on a 𝑑𝑑-dimensional Haar 
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wavelet kernel. The kernel functionality can be represented by a set of operations applied to 2𝑑𝑑 

data points, and is preceded and followed by perfect shuffle permutation operations [35] on the 

input and output data points. The permutation operations are performed by means of index 

calculations and scheduling. Algorithm 1 (in the appendix) performs multi-level decompositions 

of 1D-QHT operations based on a multi-dimensional Haar wavelet kernel. The kernel functionality 

is described by a set of operations applied to input states/pixels, and is preceded and followed by 

1D perfect shuffle permutation operations [35] on the input and output states/pixels. The 

permutation operations are performed by means of index calculations and scheduling. Algorithm 

2 (in the appendix) performs 2D-QHT on a set of N input pixels X and produces an output pixel 

set Y.  The first stage in the algorithm is to perform input permutations on the input pixels, followed 

by 2D Haar kernel operations on 2𝑑𝑑 = 4 neighboring pixels every cycle, and then finally output 

permutations are performed producing the output set of pixels. The 3D-QHT operation in 

Algorithm 3 (in the appendix) is very similar, performing a 3D Haar kernel on 2𝑑𝑑 = 8 neighboring 

pixels every cycle, preceded and followed by input and output permutations on the pixels.  

The hardware architectures equivalent to Algorithm 1 (in the appendix) for emulation of 1D-

QHT are shown in Figs. 33(a), (b), and (c). The first stage in Algorithm 1 is the input permutation 

𝑃𝑃𝑖𝑖𝑖𝑖1𝐷𝐷 . The permutation can be emulated by gate models of RoR and RoL operations but that incurs 

high resource utilization in the corresponding hardware architecture. For this reason, classical 

models are used that involve simple index scheduling and the corresponding emulation 

architecture is shown in Fig. 33(a). The input is a vector of quantum state coefficients which are 

written to a memory array in the index order 0 to 𝑁𝑁 − 1. Two coefficient values are then read out 

each clock cycle, with the scheduler generating the read indices 𝑖𝑖𝑋𝑋00 and 𝑖𝑖𝑋𝑋10 according to the input 

permutation, see Algorithm 1 (in the appendix). The scheduler calculates a row index 𝑖𝑖𝐻𝐻𝑜𝑜𝑟𝑟 and a 
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column index 𝑖𝑖𝑏𝑏𝑜𝑜𝑏𝑏, to determine the output indices. These are used to write the output state into an 

output buffer. Optimizations such as replacing multiplications and divisions by powers of two with 

logical shifts are done for more time and resource efficient hardware emulation. A floor operation 

module is also implemented for the scheduler.  

As shown in Fig. 31, the Haar transformations, are modeled using Hadamard gates. The 

Hadamard operation reduces to kernel operations on a set of 2𝑑𝑑 coefficients and the kernel 

operation is iterated over all data points or states. The emulation architecture for the 1D Haar 

kernel is shown in Fig. 33(b).  The design takes in 2 input coefficients, applies the kernel operations 

which involve addition and division, and outputs four coefficients per clock cycle. Conventional 

operator sharing techniques and logical shifts are applied to optimize for speed and area. 

The final stage in Algorithm 1 (in the appendix) is the output permutation, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜1𝐷𝐷 . The 

corresponding emulation architecture is shown in Fig. 33(c) and works similarly to the input 

permutation scheduler. The input vector of coefficients is written to a memory array, 2 values per 

clock cycle, with the scheduler generating the write indices 𝑖𝑖𝑌𝑌00 and 𝑖𝑖𝑌𝑌10 according to the output 

permutation described in Algorithm 1 (in the appendix). The permuted coefficients are then read 

out from memory 2 values per clock cycle. 

The architectures equivalent to Algorithm 2 (in the appendix) for emulation of 2D-QHT are 

shown in Figs 33(d), (e), and (f). The operations of the architectures are similar to those of 1D-

QHT. Four coefficient values are read each clock cycle, with the input scheduler generating the 

read indices 𝑖𝑖𝑋𝑋00, 𝑖𝑖𝑋𝑋01, 𝑖𝑖𝑋𝑋11, and 𝑖𝑖𝑋𝑋10 see Fig. 33(d) and Algorithm 2 (in the appendix). The input 

scheduler calculates a row index 𝑖𝑖𝐻𝐻𝑜𝑜𝑟𝑟 and a column index 𝑖𝑖𝑏𝑏𝑜𝑜𝑏𝑏, to determine the output indices 

which are used to write the output state into an output buffer. 2D Haar kernel operation, see Fig. 
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33(e), takes in 4 input coefficients, applies the kernel operations which involve addition and 

division, and outputs four coefficients per clock cycle. The 2D output permutations scheduler, see 

Fig. 33(f), works similar to that for 1D, and operates on 4 coefficient values per clock cycle. 

 
(a) Input permutations scheduler for 1D-QHT. 

 

 
(b) Haar kernel for 1D-QHT. 

 
(c) Output permutations scheduler for 1D-QHT. 
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(d) Input permutations scheduler for 2D-QHT. 

 

 
(e) Haar kernel for 2D-QHT. 

 

(f) Output permutations scheduler for 2D-QHT. 
 

Fig. 33: Hardware architectures for emulation of 1D-QHT and 2D-QHT. 

6.2 Dynamic Multi-Pattern Search using Quantum Grover’s Search 

Generally, Grover’s algorithm consists of two main steps, the oracle (also called phase 

inversion) and diffusion (also called inversion about the mean) [16]. For both traditional single-
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pattern as well as multi-pattern Grover’s algorithm, the oracle circuit has to be statically set up 

before computations for every input search pattern, which is inconvenient for fast and dynamic 

search. Therefore, we present a modified Grover’s algorithm capable of fast, dynamic searches 

with multiple patterns. 

6.2.1 Proposed Methodology 

Our proposed methodology for dynamic multi-pattern Grover’s search is shown in Fig. 34 and 

consists of two modifications compared to the conventional single-pattern Grover’s search. Our 

first modification adds a dynamic oracle circuit 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 that locates items at the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 

indices of the search list. This is followed by a conventional Grover’s diffusion circuit 𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖 

that increases the probabilities of locating the pattern(s). The oracle and diffusion quantum circuits 

are repeated for m iterations to produce an output quantum state, where m is the optimal number 

of iterations given by (10). Our second modification adds a permutation 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 of the basis of 

the quantum state, which is critical for successfully locating the target pattern(s).  

 
 

Fig. 34: Proposed/modified quantum circuit for multi-pattern Quantum Grover’s Search. 
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Separate from the oracle and diffusion stages, the permutation can be performed using either 

classical or quantum gates.  The proposed permutation circuit uses ancilla bits/qubits, in which the 

target pattern(s) are encoded, to assign the probability coefficients to the correct basis states. 

6.2.2 Implementation 

The proposed quantum circuit for multi-pattern Grover’s algorithm, see Fig. 34, has four sets 

of inputs: 1) a set of n compute qubits |𝜓𝜓⟩ which are all initialized to the ground state |0⟩, i.e., 

|𝜓𝜓⟩ = |0⟩⨂𝑖𝑖, 2) a single flag ancilla qubit initially set to the ground state |0⟩, 3) a set of 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 

entries of statically initialized n ancilla qubits, i.e., 𝑆𝑆 = �|0⟩, |1⟩, … , �𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑−1��, and 4) a set of 

𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 entries of dynamically changing n ancilla qubits that represent the input search patterns 

in |𝜓𝜓𝑖𝑖𝑖𝑖⟩, i.e., 𝑃𝑃 = �|𝑃𝑃𝑜𝑜⟩, |𝑃𝑃𝑜𝑜⟩, … , �𝑃𝑃𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝−1��. For example, if 𝑃𝑃 = {|3⟩, |7⟩} then the basis states 

to be located and amplified in the initial quantum state are |3⟩ and |7⟩ and  𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 = 2. 

The first step, as shown in Fig. 34, is to initialize the input state of the qubits, |0⟩, to a uniform 

superposition state, |𝜓𝜓𝑖𝑖𝑖𝑖⟩. This is accomplished by applying an H gate to each one of the n qubits, 

i.e., 𝐻𝐻⨂𝑖𝑖 = 𝐻𝐻⨂𝐻𝐻⨂…⨂𝐻𝐻, which sets equal amplitudes to all states in |𝜓𝜓𝑖𝑖𝑖𝑖⟩ (|0⟩, |1⟩, … , |𝑁𝑁 − 1⟩).  

The input qubit state vector |𝜓𝜓𝑖𝑖𝑖𝑖⟩ after the application of the H gate is expressed mathematically 

in (42) as: 

|𝜓𝜓𝑖𝑖𝑖𝑖⟩ =
1
√𝑁𝑁

�|𝑖𝑖⟩
𝑁𝑁−1

𝑖𝑖=0

 (42) 

Once the input qubits are in a uniform superposition state, a modified dynamic oracle operation 

𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 and an unmodified diffusion operator 𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖, are applied m consecutive times, 

amplifying the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 states. As only the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 states will be amplified, a 

permutation step, 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝, is performed to assign the high amplitudes to the target states based 
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on the input patterns P. These iterations produce the final output state, |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩.  This process can 

be represented using a single unitary matrix 𝑈𝑈𝐴𝐴 = �𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖 ∙ 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝�
𝑖𝑖

, and m is the optimal 

number of iterations given by (10). The probability, 𝑃𝑃𝑑𝑑𝑜𝑜𝑏𝑏𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑, of successfully finding a desired 

pattern in the final output state |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ is expressed in (43) [37], where N is the size of the unsorted 

list of elements and 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 equals the number of solutions/patterns being searched for such that 

𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 ≤ 𝑁𝑁. 

𝑃𝑃𝑑𝑑𝑜𝑜𝑏𝑏𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑 = �sin�(2𝑚𝑚 + 1) × 𝜃𝜃��2 
 

𝜃𝜃 = sin−1 ��𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝
𝑁𝑁

�, and 0 < 𝜃𝜃 ≤ 𝜋𝜋
2
 

(43) 

 

6.2.3 Modified Oracle and Diffusion Circuits 

Our proposed oracle model, 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝, uses cX gates to dynamically modify the target pattern as 

seen in Fig. 34. Dynamic modification of the search pattern allows us to extend and generalize the 

algorithm to dynamically search for any pattern with a single quantum circuit. In the conventional 

Grover’s algorithm, a different oracle is needed for every search pattern, requiring a new quantum 

circuit for each pattern. In our modified Grover’s algorithm, the cX gates in each oracle are 

controlled by ancilla qubits that are set to the current pattern that is being amplified, |𝑖𝑖⟩, as seen in 

Fig. 35(a). To generalize the circuit further, only the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 amplitudes are inverted. 

Therefore, in single-pattern search, the oracle ancilla qubits are set to |0⟩ so that only the amplitude 

on the first state will be inverted. For multi-pattern search, we apply cascaded, incremental single-

pattern oracle quantum circuits to invert the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 amplitudes as seen in Fig. 35(b). As 

oracle circuits are mutually exclusive, i.e., each oracle circuit only inverts a single state and does 

not affect any other state, they could be sequentially cascaded in any arbitrary order, e.g., an 
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ascending order as shown in Fig. 35(b). The output from the oracle, |𝜓𝜓1⟩, is subsequently provided 

to the next stage, i.e., Grover’s diffusion, for amplification. 

 
(a) Modified Grover’s oracle for a single solution/pattern. 

 

 
(b) Modified Grover’s oracle for multiple solutions/patterns 

 
Fig. 35: Modified oracle circuits for the proposed multi-pattern Quantum Grover’s Search 

The diffusion circuit, 𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖, is identical to the conventional diffusion circuit used in 

Grover’s algorithm, see Fig. 5(b). The diffusion circuit only amplifies the states negated by the 

oracle, such that their resultant amplitudes are greater than their values before the oracle operation 

was performed. Because the oracle only inverts the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 states and the diffusion circuit 

only amplifies inverted states, the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 states are amplified while the remaining state 

amplitudes are attenuated. The 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 and 𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖 stages are then iterated over m times to 

maximize the target amplitudes. 
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6.2.4 Quantum State Permutation 

Our modified design of Grover’s algorithm amplifies the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 states, and a 

permutation step is added to assign the amplified amplitudes to the target basis states in the output 

state |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩. Similar to our oracle implementation, the permutation step consists of cascaded 

mutually exclusive single permutation operations, as seen in Fig. 36. The individual permutation 

step swaps two selected states based on a static index I and a dynamic input pattern 𝑃𝑃𝑖𝑖, where 𝑃𝑃𝑖𝑖 ∈ 

𝑃𝑃 = �𝑃𝑃0,𝑃𝑃1, … ,𝑃𝑃𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝−1�. As each individual permutation step only swaps a single state with 

another state, a total of 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 permutation steps are needed to permute each high state with one 

target basis state. Here, each permutation step, denoted 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋, swaps the state in |𝑖𝑖⟩ with the 

state located at 𝑃𝑃𝑖𝑖. In other words, 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝0 means that state |𝜓𝜓0⟩ is swapped with the first index 

of P, i.e., 𝑃𝑃0, which can be any state in |𝜓𝜓2⟩. This is then followed by the second state |1⟩ with the 

second pattern in P, i.e., 𝑃𝑃1, and so on until the last state 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 − 1 is swapped with the last 

pattern in P, i.e., 𝑃𝑃𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝−1, as shown in Fig. 36(f) and described by (44). 

𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 = 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝−1
∙ … ∙ 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋 ∙ … ∙ 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝0 

(44) 
𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋 = 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋

𝑜𝑜𝑜𝑜𝑔𝑔𝑔𝑔𝑏𝑏𝑝𝑝 𝑑𝑑𝑏𝑏𝐻𝐻𝑔𝑔 ∙ 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋
𝑑𝑑𝑟𝑟𝐻𝐻𝑝𝑝 ∙ 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋

𝑑𝑑𝑝𝑝𝑜𝑜𝑝𝑝𝑏𝑏𝑜𝑜|𝑆𝑆𝜋𝜋⟩ ∙ 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋
𝑑𝑑𝑟𝑟𝐻𝐻𝑝𝑝 ∙ 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋

𝑑𝑑𝑝𝑝𝑜𝑜𝑝𝑝𝑏𝑏𝑜𝑜|𝑖𝑖⟩  

Once all 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 permutations are performed, the output state |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ will have high amplitudes 

only in the desired states. The quantum circuit that performs the individual permutation operation 

consists of five consecutive steps as shown in Fig. 36(d) and described by (44). 
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(a) Detect |𝑖𝑖⟩ and toggle flag 
ancilla operation 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋

𝑑𝑑𝑝𝑝𝑜𝑜𝑝𝑝𝑏𝑏𝑜𝑜|𝑖𝑖⟩  
(b) Swap operation 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋

𝑑𝑑𝑟𝑟𝐻𝐻𝑝𝑝  
(c) Detect 𝑃𝑃𝑖𝑖 and toggle flag ancilla 

operation 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋
𝑑𝑑𝑝𝑝𝑜𝑜𝑝𝑝𝑏𝑏𝑜𝑜|𝑆𝑆𝜋𝜋⟩ 

 
(d) Permutation circuit 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋 for a single pattern 

 
(e) Detailed permutation circuit 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋 for a single pattern 



81 
 

 
(f) Permutation circuit 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 for multiple patterns 

Fig. 36: Permutation circuits for multi-pattern Quantum Grover’s Search. 

The first step, shown in Fig. 36(a), detects the index at |𝑖𝑖⟩ and toggles (sets) the flag ancilla 

qubit to |1⟩ whenever �𝜓𝜓2𝜋𝜋� = |𝑖𝑖⟩, but leaves it unchanged at |0⟩ for all other states of �𝜓𝜓2𝜋𝜋�. This 

singles out the desired coefficient to swap in �𝜓𝜓2𝜋𝜋� and allows it to be manipulated without 

affecting the other coefficients in �𝜓𝜓2𝜋𝜋�. The second step, shown in Fig. 36(b), is labeled as the 

swap operation and swaps the desired flagged coefficient at |𝑖𝑖⟩ to the correct index of |𝑃𝑃𝑖𝑖⟩. To do 

this, X gates are applied only when the ancilla qubit is flagged to |1⟩ and |𝑖𝑖⟩ ⊕ |𝑃𝑃𝑖𝑖⟩ = |1⟩. This 

will swap the coefficient value at |𝑖𝑖⟩ with that at |𝑃𝑃𝑖𝑖⟩ leaving the flagged coefficient at the right 

index, while the ancilla qubit remains flagged to |1⟩. The third step, shown in Fig. 36(c), is similar 

to the first step where it detects the index at |𝑃𝑃𝑖𝑖⟩ and toggles the flag ancilla qubit. However, instead 

of flagging the ancilla qubit when �𝜓𝜓2𝜋𝜋� = |𝑖𝑖⟩, this step toggles (resets) the flag on the ancilla qubit 

when �𝜓𝜓2𝜋𝜋� = |𝑃𝑃𝑖𝑖⟩. At this point, the original flagged coefficient that was at index |𝑖𝑖⟩ in �𝜓𝜓2𝜋𝜋� has 

been swapped to index |𝑃𝑃𝑖𝑖⟩, and the coefficient at index |𝑃𝑃𝑖𝑖⟩ has yet to be swapped back. In steps 

four and five, we swap back the coefficient at |𝑃𝑃𝑖𝑖⟩ by applying an additional swap operation (step 
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four) and an additional detect operation (step five). Step five restores the flag ancilla qubit to its 

initial ground state |0⟩. The circuit is shown in its entirety in Fig. 36(e). This permutation circuit 

allows for a more generalized and flexible design, as the oracle/diffusion circuit only needs to 

amplify the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 and the permutation circuit can dynamically swap the necessary states. 

6.2.5 Hardware Architectures for Emulating Quantum Grover’s Search 

For hardware implementation of the proposed multi-pattern quantum Grover’s algorithm, our 

objective was to derive space-efficient emulation architectures while maintaining a high level of 

accuracy and throughput. High accuracy was achieved by using single-precision floating-point 

representations to model qubits and quantum operations. The complex coefficients describing 

qubits and quantum gates are represented using 64 bits, with 32 bits for the real and imaginary 

components respectively.  

To achieve our goals of space-efficiency and high throughput, we conducted a thorough 

analysis of each stage of our proposed modified Grover’s algorithm. The first stage of the proposed 

algorithm is qubit initialization and normalization, see Fig. 34. This was realized efficiently and 

simply on classical hardware by initializing an array of ones, and can also be achieved with the 

equivalent quantum circuit 𝐻𝐻⨂𝑖𝑖. To implement the second stage 𝑈𝑈𝐴𝐴, shown in Fig. 34, we used 

the stream-based CMAC emulation approach, whose architecture is presented in Fig. 25. The 

emulator determines the output quantum state |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ given an input state |𝜓𝜓𝑖𝑖𝑖𝑖⟩ and the unitary 

operation of the quantum algorithm 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴, where 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑈𝑈𝐴𝐴 for the case of Grover’s algorithm. 

The inputs are streamed in and stored in buffers, the outputs are streamed out from an output buffer, 

and the dataflow architecture is fully pipelined. 

The emulation architecture leverages well-known multiply-and-accumulate techniques. An 

efficient complex multiply-and-accumulate (CMAC) unit is designed to perform complex vector-
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matrix and matrix-matrix multiplications. The number of CMAC instances that the emulator 

architecture uses can be varied from 1 to N, as a trade-off between circuit area and speed. 

Additionally, irrespective of the number of operations in the algorithm that is being modeled, the 

architecture of the CMAC remains fixed. In other words, a single CMAC will always have the 

same number of arithmetic units, allowing the use of the same number of CMAC unit(s) with 

increasing circuit size. This ensures a highly scalable and space-efficient design. This emulation 

model is also generalized and capable of emulating any quantum algorithm that can be reduced to 

a single unitary transformation, i.e., the algorithm matrix can be pre-computed and stored on a host 

machine and streamed into the emulator during the computation. The streaming technique accounts 

for algorithms such as Shor’s, whose algorithm matrix changes dynamically as the algorithm 

inputs change. As a result of streaming, there is a communication latency overhead between the 

host machine and emulator, but the latency is negligible compared to computation time. The 

computational complexity of this emulation model is 𝑂𝑂(𝑁𝑁2). However, pre-computing the 

algorithm matrix is generally challenging and can add to the complexity of the emulation, 

depending on the targeted quantum algorithm. In the case of some algorithms, such as Shor’s and 

Quantum Approximation Optimization Algorithm (QAOA) [57], the pre-computation could limit 

the efficiency of the emulation model.  

A single CMAC unit is shown in Fig. 23 and its operations are described in (20). A single 

CMAC unit works on the real and imaginary elements of the input state vector and algorithm 

matrix, performing four additions and four multiplications in total. Using this CMAC architecture, 

we store only the quantum state vectors and use fast input streams for the algorithm matrix 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴. 

This technique allows the emulation of a much higher number of qubits than existing emulator 

designs. 
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The final operation of the algorithm is 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝, illustrated in Fig. 34.  𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 is performed 

in two stages, both of which involve permuting the coefficients in the quantum state vector |𝜓𝜓2⟩ 

to produce the output quantum state vector |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩. In the first permutation stage, shown in Fig. 

37(a), the output vector |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ is populated with the low coefficient value located at index 

𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 of the |𝜓𝜓2⟩ vector. In the second stage of permutation, shown in Fig. 37(b), the amplified 

indices (0 to 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 − 1) in |𝜓𝜓2⟩ are driven to the target indices in |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ based on P.   

  
(a) First stage of permutation 

 
(b) Second stage of permutation 

Fig. 37: Stages of the permutation operation on a quantum state vector. 

To perform these permutations, 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 can be emulated as a direct quantum circuit model of 

quantum gates as shown in Fig. 36(e) and Fig. 36(f). We propose a more space-efficient approach 

for emulation using classical methods like index scheduling, since quantum permutation is, in 

essence, the swapping of basis coefficients of the quantum state. For a hardware index scheduler, 

let I index values be defined as a function of j index values: 

𝑖𝑖 = �
0,          𝑖𝑖𝑓𝑓 𝑗𝑗 ∈ 𝑃𝑃

         𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑, 𝑅𝑅𝑞𝑞ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒          

The basis coefficients of the input and output states of 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 are stored at indices I and j as 𝐶𝐶𝑖𝑖
𝜓𝜓2 

and 𝐶𝐶𝑗𝑗
𝜓𝜓𝑜𝑜𝑜𝑜𝑡𝑡 respectively: 
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𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜(𝑗𝑗) = 𝐶𝐶𝑗𝑗
𝜓𝜓𝑜𝑜𝑜𝑜𝑡𝑡 

𝜓𝜓2(𝑖𝑖) = 𝐶𝐶𝑖𝑖
𝜓𝜓2 

The quantum input and output states of 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝, which are |𝜓𝜓2⟩ and |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩, respectively, are 

defined by the following expressions: 

|𝜓𝜓2⟩ = �𝐶𝐶𝑖𝑖
𝜓𝜓2

𝑁𝑁−1

𝑖𝑖=0

|𝑖𝑖⟩ 

|𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ = �𝐶𝐶𝑗𝑗
𝜓𝜓𝑜𝑜𝑜𝑜𝑡𝑡

𝑁𝑁−1

𝑗𝑗=0

|𝑗𝑗⟩ 

The permutation operation may then be described as: 

𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜(𝑗𝑗) = 𝜓𝜓2(𝑖𝑖) (45) 

 
Fig. 38: Hardware index scheduler modeling quantum permutation for Grover’s search. 

Based upon the above discussions and mathematical model, we design an efficient hardware 

index scheduler to model the quantum permutation, 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝. The scheduler hardware architecture 

is shown in Fig. 38. A mod-N counter generates the j index values. The set of I index values are 

calculated based on comparisons of each generated j index with the target patterns 

�𝑃𝑃0,𝑃𝑃1, … ,𝑃𝑃𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝−1�. The outputs of the comparisons are OR-ed and connected to the control 
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of a selector/multiplexer (MUX). The MUX sets the value of the I index to 0 if there is a match 

between the j index and any of the patterns, or to 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 if there is no match. The generated I 

and j indices are used to read from the |𝜓𝜓2⟩ vector and write into the |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ vector, as described 

by (45). 

6.3 Quantum Pattern Recognition 

6.3.1 Methodology Overview 

We present a quantum-algorithm-based methodology for dimension reduction and pattern 

matching in high-resolution hyperspectral data. The methodology has two main operations, (1) 

performing dimension reduction on the input data set while preserving its spatial locality as a pre-

processing technique, and (2) searching for the dynamically changing target patterns in the data 

with reduced dimensionality. The first stage of operations, dimension reduction, is achieved by 

applying multi-dimensional QHT (1D-, 2D-, and/or 3D-QHT) in multiple decomposition levels, 

to convert the high spatial resolution of the input data to a desired, low spatial resolution. The 

multi-level QHT is implemented as cascaded packet wavelet decomposition [56]. A set of input 

patterns are also provided to the system and a pattern matching search is then performed on the 

low spatial resolution data set using multi-pattern Grover’s search algorithm. In Grover’s 

algorithm, a pattern generally means any binary string representing an integer.  

Input classical data is encoded on n qubits |𝑞𝑞0⟩, 𝑞𝑞1⟩, ... , 𝑞𝑞𝑖𝑖−1⟩, see Fig. 39, representing the N 

basis states of a superimposed quantum state, where 𝑛𝑛 = ⌈log2 𝑁𝑁⌉. This can be achieved using 

classical-to-quantum encoding methods as described in [16], or the C2Q methods proposed in this 

work. For example, one of the methods described in [16] is pure state synthesis, i.e., the problem 

of encoding data in a quantum state reduces to the problem of synthesizing the state. The 

SynthesizePureState algorithm described in [16] and [44] has a complexity of 𝑂𝑂(𝑁𝑁2), which is 
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similar to the cost of processing an 𝑁𝑁 × 𝑁𝑁 image using classical methods. Therefore, the classical-

to-quantum encoding is a cost worth paying especially if the subsequent quantum algorithms 

provide substantial speedup compared to the classical equivalents. 

 

Fig. 39: Overview of methodology for pattern recognition using dimension reduction. 

The input qubits, assuming the data has been encoded, undergo L decomposition levels, where 

𝐿𝐿 = �1
𝑑𝑑

log2
𝑁𝑁
𝑁𝑁𝑝𝑝
�, where 𝑑𝑑 = 2 for 2D-QHT, 𝑑𝑑 = 3 for 3D-QHT, and 𝑁𝑁𝑅𝑅 is a fixed and pre-

determined number of states less than 𝑁𝑁 that represents the size of the data with reduced 

dimensionality. The number of qubits needed to represent the data with reduced dimensionality 

decreases to 𝑛𝑛𝐻𝐻 = ⌈log2 𝑁𝑁𝐻𝐻⌉. It is desired to perform multi-pattern quantum Grover’s search (QGS) 

for a given 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 number of patterns/basis states using the 𝑛𝑛𝐻𝐻 qubits |𝑞𝑞0⟩, |𝑞𝑞1⟩, ... , �𝑞𝑞𝑖𝑖𝑝𝑝−1�, 

see Fig. 39. For the pattern search, m iterations [37] of multi-pattern quantum Grover’s search 

(QGS) is applied. In the next sections, the QHT and QGS circuits that will be used for this 

methodology are discussed.  

6.3.2 Quantum Circuits 

Two variants of implementing QHT circuits (Sequential QHT and Parallel QHT) have been 

discussed previously, see Figs. 31(b) and 31(c) respectively. Considering the optimized Parallel 

QHT circuit variant in Fig. 31(c), we generalized the number of steps of swap gates required for 
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the permutations as a function of the number of qubits, n, the number of dimensions of the kernel, 

d, and the number of qubits representing the dth dimension, 𝑛𝑛𝑑𝑑. For input and output permutations, 

the number of steps, or circuit depth is given by (46) and (47) respectively. The circuit depth for 

d-dimension Haar operation is always 1 since the circuit is one level of Hadamard gate(s). 

Therefore, total circuit depth for multi-level, multi-dimensional QHT, taking into account the 

number of levels of decomposition, L, is given by (48). 

               𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑆𝑆𝜋𝜋𝑛𝑛   =   (𝑛𝑛 − 𝑛𝑛𝑑𝑑) − (𝑑𝑑 − 1) 

 
(46) 

𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑆𝑆𝑜𝑜𝑜𝑜𝑡𝑡 =     𝑛𝑛 − 𝑛𝑛𝑑𝑑      

 
(47) 

𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑄𝑄𝐻𝐻𝑄𝑄 = �𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ

𝑆𝑆𝜋𝜋𝑛𝑛 + 1 + 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑆𝑆𝑜𝑜𝑜𝑜𝑡𝑡 � ∙ 𝐿𝐿 

           = (2(𝑛𝑛 − 𝑑𝑑 + 1) − 𝑛𝑛𝑑𝑑) ∙ 𝐿𝐿 
(48) 

 

For dynamic multi-pattern Grover’s search, we extended the conventional single-pattern 

Grover’s search algorithm by modifying the phase inversion stage of the algorithm. Overview of 

the methodology for this process is shown in Fig. 34, where |𝜓𝜓𝑖𝑖𝑖𝑖⟩ is the output from 2D-QHT or 

3D-QHT, P is the list of patterns to be searched for, and S is a series of indexes ranging from |0⟩ 

to �𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 − 1�. The process to find the circuit depth for multi-pattern Grover’s search algorithm 

can be separated into the four separate stages that are shown in Fig. 34, and is described in (49) 

where 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑄𝑄𝐴𝐴𝑆𝑆  is the number of time steps or circuit depth of Grover’s algorithm and m is the amount 

of times 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 and 𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖 stages, see Fig. 34, are repeated. 

𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑄𝑄𝐴𝐴𝑆𝑆 = 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ𝐻𝐻 + 𝑚𝑚�𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 + 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖� + 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 (49) 

 

In the 𝐻𝐻⨂𝑖𝑖 stage, the depth is simply 1, i.e., 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ𝐻𝐻 = 1, as one H gate is applied to each qubit. 

This can be done in one time step as each H operation is independent from each other. In the  phase 

inversion stage of Grover’s algorithm, oracle circuits [58] are generally implemented using a cZ 
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gate, and multiple X gates. To make the pattern search dynamic, we proposed using cX or 

controlled X-gates, with the index at S acting as the controlling qubits. This modified 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 circuit 

for single-pattern Grover’s search is shown in Fig. 35(a), where the input quantum state, formed 

by qubits |𝑞𝑞0⟩, 𝑞𝑞1⟩, ... , 𝑞𝑞𝑖𝑖−1⟩, is in equal superposition of its basis states after applying an H gate 

to each qubit as shown by the 𝐻𝐻⨂𝑖𝑖 block in Fig. 34. The X-gates controlled by the search pattern 

dynamically changes the basis state that the oracle is searching for. The use of cX-gates also allows 

us to generalize the algorithm for multi-pattern search. Fig. 35(b) shows the proposed oracle for 

dynamic multi-pattern, dynamic Grover’s search. To search for multiple patterns, 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 single-

pattern oracle circuits must be cascaded, with each oracle circuit controlled by the corresponding 

index qubits as described by: 

𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 = 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝−1 ∙ … ∙ 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝𝜋𝜋 ∙ … ∙ 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝0 (50) 

In the single pattern oracle circuit, see Fig. 35(a), the cX gates operate independently from each 

other as each cX gate operates on a qubit pair with no overlap. From this, the depth of the single 

pattern oracle circuit is 3 with a cX step followed by a 𝑐𝑐𝑖𝑖−1𝑍𝑍 step and lastly an additional cX step. 

The depth for the multi-pattern circuit is simply 3 × 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 as each pattern has its own single 

pattern circuit as shown in Fig. 35(b). The total depth of the 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 , 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 = 3 × 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑. 

For the next stage, i.e., inversion about mean, the circuit we are using is identical to the 

traditional Grover’s algorithm inversion about mean circuit [58]. Additionally, just like in 

traditional Grover’s algorithm, the phase inversion and inversion about mean circuits are iterated 

m times as described in (10). The depth of the inversion about mean, 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖 = 5 . The circuit 

first applies an H gate to each qubit followed by an X gate again to each qubit, then there is a single 

𝑐𝑐𝑖𝑖−1𝑍𝑍 gate which is followed again by an X and an H gate applied to each qubit, resulting in a 
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total of 5 time-steps. This method amplifies the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 states, so a permutation stage 

dependent on the pattern being searched for is needed.  

The permutation circuit has five sub circuits, see Fig. 36, in which the detect and toggle circuits 

have the same depth. The detect and toggle circuits each has a depth of 3 similar to the single 

pattern oracle circuit as the cX gates operate independently from each other on qubit pairs with no 

overlap. In the case of the swap circuits, each qubit has a 𝑐𝑐𝑐𝑐′𝑐𝑐𝑐𝑐 and 𝑐𝑐𝑐𝑐𝑐𝑐′𝑐𝑐 gate. These gates are 

mutually exclusive because if one gate is applied the other gate is guaranteed to not be applied due 

to the control qubits. However, the cX gates between each qubit are not mutually exclusive as they 

all depend on using the ancillary qubit. This results in a circuit depth of n. For multi-pattern cases 

the circuit depth is again multiplied by 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 similar to the oracle circuit. Combining 

everything together gives the following circuit depth for the 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 stage, 

𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 = (9 + 2𝑛𝑛) × 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 (51) 

 

Substituting in all four of the depth equations into (49) results in the final QGS circuit depth given 

in (52). 

𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑄𝑄𝐴𝐴𝑆𝑆 = 1 + 𝑚𝑚�3𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 + 5� + (9 + 2𝑛𝑛)𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 (52) 

Using the proposed methodology and quantum circuits of QHT and QGS, it is possible to 

achieve polynomial speedup over classical methods and techniques. The best known classical 

search algorithm has complexity of 𝑂𝑂(𝑁𝑁) [5] [37], while QGS provides quadratic speedup with 

complexity of 𝑂𝑂�√𝑁𝑁� [5] [37]. Applying dimension reduction using QHT reduces the state space 

for Grover’s search from 𝑁𝑁 to 𝑁𝑁𝐻𝐻, thereby improving the complexity to 𝑂𝑂��𝑁𝑁𝐻𝐻�, where 𝑁𝑁𝐻𝐻 = 𝑁𝑁
2𝑑𝑑𝑑𝑑

, 

where d is the number of data dimensions. Moreover, the use of QHT compared to a classical 
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method such as DWT also improves the complexity from 𝑂𝑂(𝑁𝑁) to 𝑂𝑂(log2 𝑁𝑁) because of encoding 

the classical data as state coefficients/amplitudes [16]. 

6.3.3 Considerations for Practical Quantum Pattern Recognition 

In practical implementation of quantum circuits, decoherence [11] plays an important part and 

is a critical consideration in the design of quantum computers. Decoherence is the noise in quantum 

circuits that disrupts the desired evolution of the quantum state. For any quantum circuit, the 

duration of the longest possible quantum computation is the ratio of the system decoherence time, 

i.e., the total time the system remains quantum-mechanically coherent, to the time taken for basic 

two-qubit unitary transformations [11]. Estimates of the total number of operations possible on 

different technologies of quantum computers such as nuclear spin, ion trap, quantum dot, etc., are 

given in [11]. For example, an ion trap quantum computer has a decoherence time of around 10−1 

seconds and a gate operation time of 10−14 seconds, and can therefore perform up to 1013 

operations [11]. From our circuit analysis in previous sections, 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑄𝑄𝐻𝐻𝑄𝑄  and 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ

𝑄𝑄𝐴𝐴𝑆𝑆  can be used 

along with the technology gate operation time to determine the practical implementation of the 

proposed circuits.  

Fidelity of quantum gates is another important practical consideration. In quantum information 

theory, fidelity is used to measure how close two quantum states are. It is the probability that one 

state will pass a test and identify as the other [11]. Fidelity threshold of quantum gates is dependent 

on the underlying quantum technology. For example, superconducting quantum gates have a per-

step fidelity threshold of 99% [8]. On the other hand, silicon-based qubit technology have achieved 

gate fidelities exceeding 99.9% [59]. Quantum gate fidelity can be improved by using additional 

error-correcting qubits.  
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Chapter 7: Experimental Results and Analysis 

7.1 Experimental Platforms 

7.1.1 DirectStream 

 
Fig. 40: DirectStream (DS8) system architecture. 

One of the evaluation platforms used for the experimental work was DS8, a state-of-the-art 

high-performance reconfigurable computing (HPRC) system provided by DirectStream. DS8 is a 

platform where developers can build applications onto systems ranging from single-node compute 

instances to multi-node chassis to multi-chassis racks, see Fig. 40. The DS8 system removes OS 

elements and is an FPGA-only hardware architecture. This has benefits such as reduced 

interconnection bottlenecks, reduced resource contention, and reduced cost and energy use, 

compared to conventional CPU+FPGA architectures. A single C2 compute node of the DS8 
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system is equipped with high-end Intel-Altera Arria 10 10AX115N4F45E3SG FPGA and on-

board memory (OBM) SDRAM and SRAM modules, as shown in Fig. 40. The FPGA on-chip 

resources (OCR) consist of 427,200 Adaptive Logic Modules (ALMs), 2,713 Block RAMs 

(BRAMs), and 1,518 Digital Signal Processing (DSP) blocks, while the on-board memory (OBM) 

consists of 4 × 8MB SRAM banks and 2 × 32GB SDRAM banks. The DS8 hardware system is 

integrated with DirectStream’s programming environment, which succeeds the previous Carte-C 

compiler [60]. DirectStream’s environment uses a High-Level Language (HLL) which facilitates 

the development of complex, parallel, and reconfigurable codes in an efficient manner. The study 

in [61] showed that Carte-C has a highly productive environment, short acquisition time, short 

learning time as well as a short development time. The DS8 architecture provides a combination 

of high performance, high scalability, runtime reconfiguration, and ease of use. 

7.1.2 Xilinx Alveo  

The second evaluation platform used for the experimental work was an HPRC system based 

on Xilinx Alveo U250 Data Center Accelerator [62] connected to a host PC, see Fig. 41. The host 

PC has the following configuration: 16-core, 3GHZ AMD CPU with 251GB system memory, and 

uses fast Gen3 PCIe for host-to-board configuration and data communications, see Fig. 41(a). The 

Alveo U250 board contains an XCU250 FPGA that uses Xilinx stacked silicon interconnect (SSI) 

technology. SSI technology allows for increased density by combining 4 super logic regions 

(SLRs). The deployment shell that handles device bring-up and configuration over PCIe is 

contained within a static region of the FPGA. The remaining dynamic region is available for 

developers to implement custom accelerators and kernels. The dynamic regions resources consist 

of 1341K look-up tables (LUTs), 2,749K registers, 2000×36KB block RAMs, and 11,508 DSP 

slices. In addition, the on-board memory resources consist of four 16GB 288-pin DDR4 DIMM 
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sockets populated with single rank DIMMs, see Fig. 41(a), with data transfer rates up to 2400 

MegaTransfers per second. 

 
(a) Xilinx Alveo System Architecture. 

 
(b) Measured Execution Times on the Host and Accelerator. 

 
(c) Timing profile for the Accelerator. 

Fig. 41: Xilinx Alveo System Architecture and Timing Profile. 
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The measured execution times on the system for the host and the accelerator is shown in Fig. 

41(b). The timing profile for the hardware accelerator is shown in Fig. 41(c). The time taken by 

the host to perform memory allocation, setup kernel objects, kernel queues, etc. is termed as 𝑇𝑇𝑑𝑑𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝. 

The time taken to program and configure the FPGA via PCIe is termed as 𝑇𝑇𝑏𝑏𝑜𝑜𝑖𝑖𝑑𝑑𝑖𝑖𝑔𝑔. The time taken 

to transfer data from the host memory to on-board memory of the FPGA is termed as 𝑇𝑇𝑖𝑖𝑖𝑖, and the 

time taken to transfer data from the on-board memory to the host memory is termed as 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, see 

Figs. 41(b) and 41(c). The compute time spent in the kernel on the FPGA is termed as 𝑇𝑇𝑄𝑄𝑆𝑆𝐴𝐴𝐴𝐴 and 

it also includes the data transfer times between the FPGA and the on-board memory, see Figs. 

41(b) and 41(c). The software time is denoted as 𝑇𝑇𝑆𝑆𝑆𝑆 or 𝑇𝑇𝐶𝐶𝑆𝑆𝐶𝐶 and constitutes the total time taken 

by the host (including host memory transfers) to execute the architectures, see Figs. 41(b). 

 

7.1.3 IBM Quantum 

The third platform used for experimental evaluation was IBM Quantum [63]. The IBM 

Quantum is an integrated quantum computing system consisting of a number of custom 

components (a) the quantum chip or processor built using superconducting qubits, (b) a cryogenic 

system for consistent cold temperatures and isolation from environment, (c) high-precision control 

electronics to tightly control a large number of qubits within strict parameters, and (d) classical 

resources to provide secure cloud access and hybrid execution of quantum algorithms. IBM 

Quantum provides quantum processors of varying architectures (e.g. Falcon, Hummingbird, 

Eagle), varying scale (number of qubits), quality (quantum volume [64]), and speed (Circuit Layer 

Operations per Second or CLOPs [65]). IBM Quantum also provides a python-based framework 

called Qiskit [66] for programming quantum systems on the cloud, a GUI-based interface called 
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Composer for building quantum circuits graphically, and a general-purpose simulator with noise 

modeling called IBM qasm [66]. 

For our experiments we used an open-access 15-qubit quantum processor from IBM Quantum, 

called the ibmq_16_melbourne [66]. The qubits of ibmq_16_melbourne have, on average, an 

operating frequency of 4.98 GHz, T1 (amplitude damping) time of 58.28 𝜇𝜇𝑠𝑠 and T2 (decoherence 

time) of 62.1 𝜇𝜇𝑠𝑠. The connectivity on the device is provided by total 22 coplanar waveguide (CPW) 

“bus” resonators, each of which connects two qubits. The connectivity configuration is shown in 

Fig. 42(a). The colored dots indicate qubits, and the colored bars indicate CPW bus resonators. 

Three different resonant frequencies are used for the bus resonators. The white bars indicate the 

buses with a resonant frequency of 6.25 GHz, the grey bars indicate 6.45 GHz, and the black bars 

indicate 6.65 GHz. Two of the qubits in the chip are not calibrated due to frequency instability and 

crosstalk issues [66]. Each qubit has a dedicated CPW readout resonator attached (labeled as R) 

for control and readout. Fig. 42(b) shows the chip layout. 

 
(a) Connectivity configuration of the ibmq_16_melbourne processor 

 

 
(b) Chip layout of the ibmq_16_melbourne processor 

 
Fig. 42: The ibmq_16_melbourne processor connectivity and layout 
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7.2 Evaluation of Classical-to-Quantum Data Encoding  

7.2.1 C2Q Method 1 Experiments 

The proposed method 1 for C2Q data encoding has been evaluated using (1) MATLAB, for 

simulation using noise-free qubits, (2) IBM Quantum, for noisy qubits on a real Noisy 

Intermediate-Scale Quantum (NISQ) device, and (3) Xilinx Alveo, for hardware-accelerated, 

noise-free emulation.  In the IBM Quantum environment, simulations were performed using the 

IBM qasm simulator, while real implementations were performed on the 15-qubit real quantum 

processor, ibmq_16_melbourne. Synthesis of two types of target data was performed: (1) complex 

randomized data, and (2) real grayscale image data.  

Table 5: Simulation and Implementation of Proposed C2Q Circuits using IBM Q. 

 

MATLAB and IBM Quantum Results: The experimental results from MATLAB and IBM 

Quantum are presented in Table 5. For complex randomized data, the circuit depths reach the 

theoretical upper bounds derived earlier in section 3.2.3 as the full synthesis circuit is required. 

For real image data, the gate counts and circuit depths of the circuits were reduced by at least a 

factor of two, as there are no imaginary components (𝑞𝑞𝑗𝑗 = 𝜙𝜙𝑗𝑗 = 0) in the data, and thus both the 

uniformly-controlled 𝑅𝑅𝑍𝑍 operations, i.e., 𝑅𝑅𝑧𝑧�𝜙𝜙𝑗𝑗� = 𝐼𝐼, and their corresponding CNOT operations 
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are eliminated. Results obtained from IBM qasm simulations of up to 14-qubit circuits were 

consistent with our theoretical expectations for circuit depth, see Table 1 and Table 5. Due to 

hardware constraints for the ibmq_16_melbourne device, gate counts and circuit depths were 

obtained for circuits up to only 6 qubits (complex randomized data) and 8 qubits (real image data). 

Several of the gates used in our proposed circuit, such as 𝐻𝐻, CNOT and 𝑅𝑅𝑦𝑦, are not physically 

realizable on the ibmq_16_melbourne device and are instead replaced in a transpilation process 

using a different subset of universal gates that are native to the IBM Q platform. The transpilation 

step resulted in higher gate counts and circuit depths for the implementations, compared to our 

theoretical expectations, see Table 1 and Table 5. For larger data sets that require a large number 

of qubits, and consequently larger synthesis circuits, the system decoherence time (T2) on 

ibmq_16_melbourne was exceeded, limiting implementations to only 6 qubits (complex 

randomized data) and 8 qubits (real image data). For simulations and implementations on IBM Q, 

the circuits were executed with 8000 shots (iterations) to measure the probability distributions of 

the output states. 

To verify the correctness of the proposed C2Q methodology and circuits, the encoded images 

were reconstructed from the synthesized state coefficients and the fidelity of the synthesized state 

was calculated. The state fidelity is a measure for the similarity of the measured output state 

|𝜓𝜓𝑖𝑖𝑝𝑝𝐻𝐻𝑑𝑑𝑜𝑜𝐻𝐻𝑝𝑝𝑑𝑑⟩, observed in simulation or implementation, to the theoretical or expected state 

�𝜓𝜓𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑏𝑏𝑜𝑜𝑝𝑝𝑑𝑑�. The Uhlmann-Jozsa fidelity for pure states [67] [68], given in (53), is used for our 

experiments. 

𝐹𝐹 = ��𝜓𝜓𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑏𝑏𝑜𝑜𝑝𝑝𝑑𝑑�𝜓𝜓𝑖𝑖𝑝𝑝𝐻𝐻𝑑𝑑𝑜𝑜𝐻𝐻𝑝𝑝𝑑𝑑��
2
 (53) 
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Fig. 43: Original and reconstructed images from synthesized quantum states. 

Fig. 43 shows 16×16, 32×32, 64×64-pixel grayscale images encoded using 8-qubit, 10-qubit, 

and 12-qubit synthesis circuits respectively in both MATLAB and IBM Q. The reconstructed 

images from the synthesized state are also shown along with the corresponding state fidelity 

between the original data and the reconstructed data. When the images were encoded as pure states 

using noise-free qubits in MATLAB, the reconstructed images were identical to the original 

images, i.e., 𝐹𝐹 = 100%, see Fig. 43. For simulation on realistic Noisy Intermediate Scale Quantum 

(NISQ) devices, such as the ibmq_16_melbourne, the reconstructed images were partially 

corrupted by device noise. The state fidelity between the original data and the reconstructed data 

was 99.1644%, 96.5429%, and 94.0894% for the 16 × 16, 32 × 32, and 64×64-pixel images 

respectively, see Fig. 43. 
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Hardware Emulation Results:  The hardware platform used for the evaluating the proposed C2Q 

architectures was the Xilinx Alveo U250 Data Center Accelerator, see Fig. 41. The Vitis Unified 

Software from Xilinx [62] was used for design and hardware deployment. MATLAB R2020a was 

used for data pre-processing, post-processing, and visualizations. For the purposes of comparison 

and verification, a software-based emulator was also created for the proposed architectures using 

C++. The Qiskit framework from IBMQ [66] was also used for implementing the proposed 

quantum circuits and the QASM simulator [66] was used for simulating the circuits on an IBM 

Quantum cloud-based server. 

The hardware architectures for C2Q, see Fig. 12, were implemented as reconfigurable 

hardware kernels, kernel_c2q and kernel_qht on the FPGA. The extraction of the 4-tuple 

(𝜃𝜃,𝜑𝜑, 𝑟𝑟, 𝑞𝑞) of parameters from input dataset is performed on the host machine. The parameters and 

input/output state vectors |𝜓𝜓𝑖𝑖𝑖𝑖⟩, |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ are stored on the on-board memory and transferred to the 

kernel reconfigurable regions during computation. The host machine controls memory transfers 

and kernel execution commands via a high-speed PCIe bus. The kernel_c2q is executed first, 

which operates on the input parameters and synthesizes the input quantum state |𝜓𝜓𝑖𝑖𝑖𝑖⟩, which is 

stored on the on-board memory. The input quantum state vector is then transferred to the 

kernel_qht, which executes the parallel l-level 𝑑𝑑-dimensional QHT algorithm and produces output 

state vector |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩, that is transferred back to on-board memory. 

The OpenCL framework [69] was used for development of the kernels and host program. The 

kernel architectures were fully pipelined and computation operations were implemented with 32-

bit floating-point arithmetic. RGB images with sizes ranging from 16 × 16 × 4 pixels to 

32𝐾𝐾 × 32𝐾𝐾 × 4 pixels were used as input data. For these images, C2Q circuits requiring 10 to 32 

qubits were emulated using the implemented emulation architectures.  
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Hardware (HW) run-time results from the conducted experiments are shown in Table 6 for the 

C2Q kernel. Measurements of 𝑇𝑇𝑖𝑖𝑖𝑖, 𝑇𝑇𝑄𝑄𝑆𝑆𝐴𝐴𝐴𝐴, and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 were taken from host-controlled executions on 

the FPGA, see Table 6. Data packing techniques were employed to fully utilize the host-to-FPGA 

bandwidth and achieve optimal data transfer and compute times. The setup time 𝑇𝑇𝑑𝑑𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝 and 

configure time 𝑇𝑇𝑏𝑏𝑜𝑜𝑖𝑖𝑑𝑑𝑖𝑖𝑔𝑔, see Fig. 41(c), were not included in the analysis to be consistent with CPU-

based experiments. The total HW run-time reported is the sum of the time taken to transfer data 

from the host to the Alveo board, the time taken for emulation computations on the FPGA, and the 

time taken to transfer data back to the host, i.e., 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏(HW) = 𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑄𝑄𝑆𝑆𝐴𝐴𝐴𝐴 + 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜. 

Experiments using the same RGB images were repeated on the SW emulator. C2Q circuits 

requiring 10 to 32 qubits were run on the software emulator. The 4-tuple (𝜃𝜃,𝜑𝜑, 𝑟𝑟, 𝑞𝑞) of input 

parameters as well as the |𝜓𝜓𝑖𝑖𝑖𝑖⟩, and |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ state vectors were stored in heap-allocated memory 

after reading input data files and performing computations, respectively. Measurements of 

software (SW) run-time shown in Table 6 were taken from kernel executions on a single core of 

the CPU on the host machine. The total CPU run-time, denoted as 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏(SW), is the time taken to 

perform the mathematical operations on the inputs and includes data transfer time between host 

memory and CPU. The time taken to read the input data files is not included in the reported timings.  

Table 6: Run-time results for emulation of C2Q using Xilinx Alveo. 
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For reference, the proposed quantum circuits for C2Q (method 1) were also implemented on 

Qiskit and simulated using the IBM Quantum QASM simulator. Simulation results for C2Q are 

shown in Table 6. Circuit execution times for up to 20-qubit circuits were measured for C2Q and 

simulations of larger circuits were not possible due to memory constraints on the IBM Quantum 

server machine. 

The HW implementation was benchmarked using the SW implementation as a baseline. The 

HW and SW run-times are presented graphically in Fig 44 for the C2Q kernels. The SW 

implementation performs better than the HW up to 14-qubit circuits as the CPU and host memory 

subsystem are able to take advantage of data caching. However, for larger image sizes and larger 

circuit emulations, the data caching is throttled, and the HW performance improves as it is able to 

take advantage of the FPGA's high bandwidth and fine-grain parallelism. 

 
Fig. 44: C2Q emulation run-times on different platforms. 

We determined two types of speedup of the HW relative to the reference SW implementation, 

see Table 6 and (54). We calculated the speedup of the HW implementation relative to the SW 

implementation and observed up to × 12 improvement in favor of HW for the C2Q kernel, see 

Table 6. To compare the performances of the FPGA and CPU, we calculated speedup of the total 
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FPGA execution time relative to the total CPU execution time. For large input data, the FPGA 

speedup relative to CPU was × 21 for the C2Q kernel. The FPGA was able to fully exploit its 

parallelism by instantiating concurrent processing elements for each data point. 

Speedup(𝐻𝐻𝑆𝑆/𝑆𝑆𝑆𝑆) =
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏(𝑆𝑆𝑆𝑆)
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏(𝐻𝐻𝑆𝑆)

 

(54) 
Speedup(𝑄𝑄𝑆𝑆𝐴𝐴𝐴𝐴/𝑆𝑆𝑆𝑆) =

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏(𝑆𝑆𝑆𝑆)
𝑇𝑇𝑄𝑄𝑆𝑆𝐴𝐴𝐴𝐴

 

The HW implementation was also compared with circuit simulation on the QASM simulator. 

The HW emulation run-times and QASM simulation times are shown in Fig 44. For C2Q, due to 

the complexity of the circuits, the increase in simulation time is relatively much steeper compared 

to the HW emulation time, see Fig. 44. The QASM simulator was also able to simulate up to 20-

qubit C2Q and 26-qubit QHT circuits, while HW emulation was more scalable up to 32-qubit 

circuits. For 20-qubit C2Q circuits, the HW emulation achieved 5 orders of magnitude speedup 

compared to the QASM simulation, see Table 6.  

7.2.2 C2Q Method 2 Experiments 

The following related methods were considered for implementation and comparison with our 

proposed method 2 for C2Q. 

IBM Quantum: There are two state initialization/preparation functions in Qiskit, i.e., initialize() 

and StatePreparation(). The default function for qubit state initialization in Qiskit is initialize() . 

It takes a list of state vectors and the number of qubits as inputs, and returns a state initialization 

circuit. In addition to further optimizations, the circuit construction follows the methodology 

proposed in [19]. There are also initial reset gates on all the qubits in the circuit. The 

StatePreparation() function also follows the recursive initialization algorithm proposed in [19], 
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and includes additional optimizations such as removing zero rotations and pairs of consecutive 

CNOT gates. It is similar to  initialize(), but does not contain any reset gates. 

 

Novel Enhanced Quantum Representation (NEQR): The basis encoding technique described in 

[41] uses basis states to encode the position and color of pixels (8 qubits per grayscale pixel + 𝑁𝑁 

qubits for position), where 𝑁𝑁 is the total number of pixels. The benefit of basis encoding is zero 

fidelity [67] loss when each pixel is measured and observed. However, measuring all the pixels 

makes this process slower and expensive in terms of qubit requirement compared to other encoding 

methods. A potential improvement in our implementation is dynamically setting the number of 

shots by re-running the circuit until all pixels are observed. Due to the higher qubit requirement, 

we were not able to run this method on hardware. 

 

Flexible Representation of Quantum Images (FRQI): The angle encoding technique described in 

[42] is similar to the NEQR method, where it uses basis states to encode the position and color of 

pixels (1 qubit per grayscale pixel + log𝑁𝑁 qubits for position). We implemented this method with 

some modifications for encoding colored images. However, this technique is very inefficient for 

colored image encoding (each color value per pixel requires 1 qubit) and demonstrated low fidelity. 

 

Analysis of Results: The QASM simulation results are compiled in Table 7 and presented 

graphically in Fig. 45, displaying the total execution time (circuit setup + circuit execution) plotted 

against the number of qubits used per method. Results from implementations on the publicly 

available quantum processor ibmq_manila are presented in Table 8 and shown in Fig. 46. The 

results on ibmq_manila were relatively inconclusive. The 5-qubit threshold of the quantum 
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processor was insufficient to highlight any meaningful difference between the various encoding 

methods. Moreover, when implementing on quantum processors, the overhead of the control 

hardware, i.e., the time taken by control hardware to generate and maintain gate pulses, comprises 

a large portion of the measured execution times. Therefore, it is difficult to compare and analyze 

the actual circuit execution times for the hardware implementations. 

However, meaningful information can be drawn from the QASM simulations. Firstly, the 

results of our proposed method are consistent with the StatePreparation() method in terms of state 

fidelity and execution time, see Table 7 and Fig. 45. The IBM Quantum methods are slightly faster 

in execution time (𝑇𝑇𝑝𝑝𝑚𝑚𝑝𝑝𝑏𝑏) due to various additional optimizations that are not reported in literature. 

However, our investigations revealed that these optimizations also add a significant overhead to 

constructing the circuit, leading our proposed C2Q method 2 to be significantly faster in total 

execution time, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏, see Table 7 and Fig. 45. The IBM initialize() function also includes reset 

operation. It appears that IBM also includes similar undisclosed software optimizations for 

initialize(), which lower simulation execution time, as shown in Table 7 and Fig. 45. 

Table 7: Implementations of C2Q encoding methods on IBM QASM Simulator. 

 

Table 8: Implementations of C2Q encoding methods on a 5-qubit quantum processor. 
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Fig. 45: Simulation times of C2Q encoding methods on IBM QASM Simulator. 

 
Fig. 46: Hardware execution times of C2Q encoding methods on ibmq manila. 

When comparing our proposed method (amplitude encoding) to NEQR (basis encoding) and 

FRQI (angle encoding), our method illustrates a balance between qubit cost, execution time, and 

image fidelity. While FRQI can be executed faster compared to our method, it sacrifices qubit cost 

and image fidelity. Conversely, NEQR theoretically offers perfect fidelity on all measured pixels. 

In practice, however, NEQR costs a significantly higher number of qubits and incurs substantially 

longer execution time for the same data size (image pixels), see Table 7 and Fig. 45. Moreover, 

the number of shots was insufficient for NEQR to measure all required pixels in the larger images, 

leading to fidelity loss. Resolving this issue would have required increasing the number of shots 
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for this method, which would have further increased its execution time. The original and 

reconstructed 64x64x3 images for the implemented C2Q methods are shown in Fig. 47. 

 
Fig. 47: Original and reconstructed 64x64x3 pixel images for different C2Q methods: (a) original 

image, (b) proposed, fidelity 81.95% (c) IBM State Initialization, 82.19% (d) IBM State 
Preparation, fidelity 81.99% (e) NEQR, fidelity 63% (f) FRQI, fidelity 57.15% 

7.3 Evaluation of Quantum Algorithms 

7.3.1 Implementation of QFT and Grover’s search using Gate-based Emulation  

We performed experiments to test the proposed gate-based multi-node emulation architectures, 

see Fig. 19, using QFT and single-pattern Grover’s search as test cases. All design components 

were developed using C++ on the DS8 platform. Hardware synthesis and builds were performed 

using Quartus Prime Version 17.02. The results were verified with reference models developed 

using Qiskit and MATLAB. For 5-qubit QFT, the design was partitioned, and hardware builds 

were performed on a 4-node DS8 unit containing three compute (C2) nodes, and a high speed 80 



108 
 

Gigabit Ethernet connection node, see Fig. 40(a) and Fig. 40(b). Each C2 node is populated with 

an Arria 10 FPGA, i.e., 10AX115N4F45E3SG, see Fig. 40(c). For Grover’s search one C2 node 

was sufficient for the implementation of up to 5 qubits. 

Table 9: 5-Qubit QFT Resource Utilization for Multi-Node 
FPGA resource Node 1 Node 2 Node 3 

Logic utilization (ALMs) 377,290 (88%) 369,731 (87%) 361,443 (85%) 
RAM blocks 800 (29%) 792 (29%) 764 (28%) 
DSP Blocks 29 (2%) 26 (2%) 40 (3%) 

 
Table 10: Grover’s Search (Hybrid Model) Resource Utilization for Single Node 

FPGA resource 3-qubit 4-qubit 5-qubit 
Logic utilization (ALMs) 99,436 (23.28%) 100,404 (23.50%) 101,172 (23.68%) 

RAM blocks 278 (10.24%) 280 (10.32%) 284 (10.47%) 
DSP Blocks 30 (2%) 30 (2%) 30 (2%) 

 

Table 11: Grover’s Search (Full Gate Model) Resource Utilization for Single Node 
FPGA resource 3-qubit 4-qubit 

Logic utilization (ALMs) 197,524 (47%) 374,021 (88%) 

RAM blocks 654 (25%) 1,604 (60%) 

DSP Blocks 524 (35%) 1,364 (90%) 
 

Table 12: Operating Frequencies (MHz) 
Grover’s search implementation 3-qubit 4-qubit 5-qubit 

Lee et. Al. (2016) [29] 160 170 110 

Proposed work 233 233 233 

 

The resource utilization for the experiments related to QFT and Grover’s search are presented 

in Tables 9 and 10 respectively. Table 9 shows the resource utilization on C2 compute nodes 1, 2, 

and 3 consumed by each partition of the 5-qubit QFT model, see Fig. 19. The resources were 

shared evenly between the three design partitions. The results in Table 9 show that the ALM 

resources were a limiting factor for 5-qubit QFT implementation, as approximately one third of 

the circuit fully consumes a single FPGA node. Low DSP utilization is achieved due to DSP 

functions being constructed from ALMs, which is handled by the Quartus Prime Compiler [70]. 

The proposed hybrid design of Grover’s circuit had a significant reduction in resources, shown in 
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Table 10, compared to our preliminary full-gate alternative implementations, shown in Table 11. 

The proposed architecture, see Fig. 21, allowed for a larger circuit such as the 5-qubit system to 

be accommodated on a single node. Also, for the case of Grover’s algorithm, the benefit of using 

space-time scheduling techniques in comparison to the full-gate implementation can be observed 

in Tables 10, 11, and Fig. 48. Resource scheduling results in a fixed amount of DSP resources 

being used as the quantum circuit grows in size. The increase in Adaptive Logic Module (ALM) 

utilization is linear, see Table 10 and Fig. 48(a). This is because of the adaptive feature of ALMs 

for which we directed the compiler to combine multiple functions in a single ALM for efficient 

usage of resources [70]. Also, the Intel Quartus Prime Compiler automatically searches for 

functions using common inputs or completely independent functions to be placed in one ALM to 

make efficient use of device resources [70]. There is an exponential increase in the RAM utilization 

as the number of memory blocks increases exponentially with the number of qubits n, see Fig. 

48(b). For 5 qubits, the maximum resource utilization was 24%, see Table 10. Mathematically, we 

can project the resource utilization for a higher number of qubits as shown in Fig. 48. It is predicted 

that a system of 12 qubits would consume only 25% of the logic resources (ALMs), see Fig. 48(a). 

However, due to the exponential increase in RAM resource, see Fig. 48(b), based on our 

mathematical projections, the current platform can emulate Grover’s algorithm up to 17 qubits. 

The proposed architecture for Grover’s search is suitable for integrating into larger quantum 

circuits and implementing on hardware. Moreover, with a pipelined architecture, the emulator 

achieved a consistently higher operating frequency, meaning much higher deliverable throughput 

and lower emulation time. Table 12 demonstrates this improvement in comparison to previous 

work [29] which was based on Altera Stratix IV EP4SGX530KF43C4 FPGA. Fig. 48(c) shows 

simulation results for the 5-qubit Grover’s search implementation. The binary search pattern was 
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accurately detected by the circuit with a probability of 0.999444077. From the experimental 

results, we can conclude that for quantum circuits like Grover’s search, the scalability of the design 

can be significantly improved by using our proposed framework and resource scheduling 

techniques. For circuits such as the QFT, we adopt multi-node, multi-chassis architectures to 

implement larger scale circuits. More accurate emulation of Grover’s search can be achieved by 

implementing the full quantum gate model instead of a hybrid or abstract model. To make that 

feasible, a combination of the space and space-time scheduling techniques discussed here are 

required. 

 

(a) Logic (ALM) utilization for Grover’s search implementation on a single Arria 10 FPGA. 
 

 

(b) RAM block utilization for Grover’s search implementation on a single Arria 10 FPGA. 
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(c) Simulation results for 5-qubit Grover’s search for detecting binary string “11111”. 
 

Fig. 48: Experimental results for Grover’s search. 

 

7.3.2 Implementation of QFT and Grover’s search using CMAC-based Emulation  

We performed implementations of the CMAC-based emulation model, see Fig. 22, on the DS8 

system using QFT and Grover’s search as the use cases. Implementations include the various 

CMAC architectures, (e.g., single, N-concurrent, dual-sequential) and different CMAC 

computation techniques (e.g., lookup, dynamic generation, streaming) discussed previously. All 

results are collected from hardware deployments on FPGAs with complete system and memory 

interface implementations on the DS platform. The hardware architectures were implemented in 

High-Level Synthesis (HLS) using C++. The high-level C++ codes were built for hardware using 

Quartus Prime version 17.0.2 on an Arria 10 10AX115N4F45E3SG FPGA, and the resource 

utilizations and latencies were obtained from compiler reports. As a result of fully pipelining the 

designs, a high operating frequency of 233 MHz was reported, resulting in high system throughput. 

We first implemented the single, N-concurrent, and dual-sequential-CMAC architectures using 

the lookup technique and both on-chip resources (OCR) and on-board memory (OBM) 

configurations. Emulation of the QFT algorithm was performed using these implementations. 

Table 13 reports the on-chip implementation results for the single-CMAC architecture. Fig. 49 

presents the resource utilizations as a function of the number of qubits. From this experiment, the 

ALM and DSP resource utilizations reported were constant, which was a result of using one 
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CMAC hardware unit. The BRAM units are used for on-chip storage and lookup of the algorithm 

matrix/vector elements, and the BRAM resource utilization increases exponentially with the 

number of qubits. An increase in emulation time with circuit size is also observed, as expected, 

due to the increasing number of temporal iterations of the single CMAC unit. 

Table 13: QFT Implementation Results using Single-CMAC architecture, On-chip Resources, and 
Lookup 

Number of qubits OCR* utilization (%) Emulation time 
(sec) ALMs BRAMs DSPs 

2 10.3 8.04 1.05 1.4E-6 
3 10.24 8.12 1.05 1.15E-6 
4 10.24 8.11 1.05 2.01E-6 
5 10.27 8.18 1.05 5.37E-6 
6 10.26 8.55 1.05 1.87E-5 
7 10.26 10.25 1.05 7.17E-5 
8 10.29 16.73 1.05 3.19E-4 
9 10.31 41.28 1.05 0.0013 

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518. 

 
Fig. 49: QFT on-chip resource utilizations using single-CMAC architecture and lookup. 

The implementation results of the N-concurrent-CMAC architecture are reported in Table 14 and 

Fig. 50. There is a consistent increase in ALMs as the number of CMAC hardware units in this 

architecture increases with the number of qubits. The Intel Quartus Prime hardware compiler 

applies optimizations to maintain the constant utilizations for scarce DSP units. For example, the 
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compiler automatically searches for functions using common inputs or completely independent 

functions to be placed in one ALM to make efficient use of device resources [70]. 

Table 14: QFT Implementation Results using N-concurrent CMAC architecture, On-chip 
Resources, and Lookup 

Number of qubits OCR* utilization (%) Emulation time 
(sec) ALMs BRAMs DSPs 

2 10.70 7.08 1.05 6.78E-7 
3 10.74 7.08 1.05 7.64E-7 
4 11.53 7.08 1.05 9.36E-7 
5 17.10 7.08 1.05 1.28E-6 
6 24.50 7.08 1.05 1.97E-6 
7 39.50 7.08 1.05 3.34E-6 
8 74.88 7.08 1.05 6.09E-6 

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518. 

 
Fig. 50: QFT on-chip resource utilization using N-concurrent-CMAC architecture and lookup. 

 

Table 15: QFT Implementation Results using Dual-sequential CMAC Architecture, On-chip 
Resources, and Lookup 

Number of qubits OCR* utilization (%) Emulation time 
(sec) ALMs BRAMs DSPs 

2 12.39 8.55 2.11 7.55E-7 
3 12.34 8.55 2.11 9.61E-7 
4 12.36 8.63 2.11 1.79E-6 
5 12.43 8.70 2.11 5.08E-6 
6 12.38 8.99 2.11 1.83E-5 
7 12.39 10.69 2.11 7.1E-5 
8 12.37 17.18 2.11 0.0003 
9 12.37 43.54 2.11 0.0011 

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518. 
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We implemented the third proposed architecture, i.e., dual-sequential-CMAC, in which two 

sequentially operating CMAC computations are overlapped with data write operations. Table 15 

and Fig. 51 show the obtained results. The results are similar to the first architecture 

implementation in which the ALM utilization increases exponentially while the remaining 

resource utilization is fixed. In Fig. 52, we compare the emulation time of all three 

implementations, and we observe that the N-concurrent implementation has the highest 

performance. This is due to the parallel operation of the CMAC units. The trade-off for the N-

concurrent implementation is area since we were only able to emulate up to 8 qubits, while using 

the single-CMAC and dual-sequential-CMAC architectures we were able to emulate up to 9 qubits. 

Any larger circuit exceeds the FPGA on-chip resources allocated for storing the computation 

vectors and algorithm matrix. 

 
Fig. 51: QFT on-chip resource utilization using dual-sequential-CMAC architecture and lookup. 
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Fig. 52: Comparison of QFT emulation times using CMAC architectures with on-chip memory. 

On-board memory (OBM) configurations of the proposed architectures were also implemented 

to scale the emulation to a higher number of qubits. The storage of state vectors and algorithm 

matrix is performed using on-board SRAM and on-board SDRAM memories respectively. We 

implemented this for the single-CMAC and dual-sequential-CMAC architectures running QFT. 

For the N-concurrent-CMAC architecture, an OBM configuration leads to SDRAM read/write 

contention issues, which significantly degrades the performance, and it was not considered for 

implementation. Table 16 shows the results from implementation of the single-CMAC architecture 

with an OBM configuration. The obtained results demonstrate that the on-chip resources are 

constant with increasing qubits because they are only used for the fixed number of 

adders/multipliers of the single CMAC unit. Therefore, the scalability limit is determined by the 

size of the on-board memory, which is being used to store the state vectors and algorithm matrix. 

Using 1×32 GB SDRAM bank of a single C2 compute node, it was possible to emulate up to 16-

qubit QFT, compared to 9-qubit QFT using on-chip resources. 
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Table 16: QFT Implementation Results using Single-CMAC Architecture, On-board Memory 
and Lookup. 

Number of 
qubits 

On-chip resource* utilization (%) OBM** Utilization (bytes) 
Emulation time 

(sec)*** 
ALMs BRAM DSPs SRAM SDRAM 

2 10.71 8.44 1.05 32 128 1.7E-6 
3 10.71 8.44 1.05 64 512 2.0E-6 
4 10.71 8.44 1.05 128 2K 3.9E-6 
5 10.71 8.44 1.05 256 8K 1.1E-5 
6 10.71 8.44 1.05 512 32K 3.9E-5 
7 10.71 8.44 1.05 1K 128K 0.00015 
8 10.71 8.44 1.05 2K 512K 0.00061 
9 10.71 8.44 1.05 4K 2M 0.00241 
10 10.71 8.44 1.05 8K 8M 0.00963 
11 10.71 8.44 1.05 16K 32M 0.03851 
12 10.71 8.44 1.05 32K 128M 0.15399 
13 10.71 8.44 1.05 64K 512M 0.61586 
14 10.71 8.44 1.05 128K 2G 2.36324 
15 10.71 8.44 1.05 256K 8G 9.853 
16 10.71 8.44 1.05 512K 32G 39.4209 

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518. 
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 
32GB each. 

 

We also implemented the dual-sequential-CMAC architecture with OBM configuration, and 

the results are shown in Table 17. For both OBM configurations, we observe, as expected, that the 

on-chip resources (OCR) on the FPGA are fixed for emulation of a particular algorithm due to the 

fixed architecture of the CMAC. Fig. 53 shows the comparison of the emulation times between 

the two configurations. It can be observed that the dual-sequential-CMAC architecture performs 

better in terms of emulation time. The time complexity of 𝑂𝑂(𝑁𝑁2) for single-CMAC and dual-

sequential-CMAC, see Table 4, is also reflected in these results. From our experiments, we 

conclude that the proposed dual-sequential CMAC architecture provides the highest performance 

in terms of emulation time when compared to other configurations. Integrating on-board memory 

with that architecture enables us to emulate QFT using 16 fully entangled qubits on a single Arria 

10 FPGA node with 32 GB memory, with an emulation time of 18 seconds. 
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Table 17: QFT Implementation Results using dual-sequential-CMAC Architecture, On-board 
Memory, and Lookup. 

Number of 
qubits 

On-chip resource* utilization (%) OBM** Utilization (bytes) Emulation time 
(sec)*** ALMs BRAM DSPs SRAM SDRAM 

2 12 8.63 2.11 32 128 7.55E-7 
3 12 8.63 2.11 64 512 9.61E-7 
4 12 8.63 2.11 128 2K 1.79E-6 
5 12 8.63 2.11 256 8K 5.08E-6 
6 12 8.63 2.11 512 32K 1.83E-5 
7 12 8.63 2.11 1K 128K 7.10E-5 
8 12 8.63 2.11 2K 512K 0.00028 
9 12 8.63 2.11 4K 2M 0.00113 

10 12 8.63 2.11 8K 8M 0.00451 
11 12 8.63 2.11 16K 32M 0.018002 
12 12 8.63 2.11 32K 128M 0.072006 
13 12 8.63 2.11 64K 512M 0.2888021 
14 12 8.63 2.11 128K 2G 1.152083 
15 12 8.63 2.11 256K 8G 4.608329 
16 12 8.63 2.11 512K 32G 18.4331 

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518. 
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB 
each. 
 

 
Fig. 53: Comparison of QFT emulation times using CMAC architectures with on-board memory. 
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Table 18: QFT Implementation Results using Dual-sequential-CMAC Architecture, On-board 
Memory, and Dynamic Generation. 

Number of 
qubits 

On-chip resource* utilization (%) OBM** Utilization 
(bytes) Emulation time 

(sec)*** 
ALMs BRAMs DSPs SDRAM 

2 13.16 9.58 3.23 32 1.99E-6 
4 13.16 9.58 3.23 128 3.02E-6 
6 13.16 9.58 3.23 512 1.95E-5 
8 13.16 9.58 3.23 2K 0.0003 

10 13.16 9.58 3.23 8K 0.0045 
12 13.16 9.58 3.23 32K 0.0720 
14 13.16 9.58 3.23 128K 1.1521 
16 13.16 9.58 3.23 512K 18.433 
18 13.16 9.58 3.23 2M 294.93 
20 13.16 9.58 3.23 8M 4718.934 
22 13.16 9.58 3.23 32M 18876† 
24 13.16 9.58 3.23 128M 302012† 
26 13.16 9.58 3.23 512M 4832188† 
28 13.16 9.58 3.23 2G 7.73E+7 † 
30 13.16 9.58 3.23 8G 1.23E+9 † 
32 13.16 9.58 3.23 32G 1.979E+10 † 

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518. 
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each. 

†Results are projected using a performance estimation model. 

To emulate larger QFT circuits, we perform implementation of the dual-sequential-CMAC 

architecture with OBM and using the dynamic generation technique. QFT results are shown in 

Table 18. Using the dynamic generation technique, the algorithm matrix elements are generated 

in hardware dynamically, and the SDRAM stores only the input/output state vectors. Therefore, 

up to 32-qubit emulation of QFT was possible on a single FPGA with 32 GB on-board memory, 

compared to the maximum of 16 qubits using lookup. On-chip resources are slightly higher 

because of the additional generation hardware units. Although QFT circuits for up to 32 qubits 

were successfully built on hardware, emulation times were unrealistically large for circuits larger 

than 20 qubits, and the runtimes for these circuits were estimated using an accurate model derived 

from (18), (20), and (22) for the proposed pipelined architectures. 
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Table 19: Grover’s Algorithm Implementation Results using Dual-sequential-CMAC 
Architecture, On-board Memory, and Streaming. 

Number of 
qubits 

On-chip resource* utilization (%) OBM** Utilization (bytes) Emulation time 
(sec)*** ALMs BRAMs DSPs SDRAM 

2 11 8 1 32 2.3E-6 
4 11 8 1 128 3.4E-6 
6 11 8 1 512 2.0E-5 
8 11 8 1 2K 2.8E-4 

10 11 8 1 8K 4.5E-3 
12 11 8 1 32K 7.2E-2 
14 11 8 1 128K 1.15E0 
16 11 8 1 512K 1.84E+1 
18 11 8 1 2M 2.95E+2 
20 11 8 1 8M 4.72E+3 
22 11 8 1 32M 7.5E+4† 
24 11 8 1 128M 1.2E+6† 
26 11 8 1 512M 1.93E+7† 
28 11 8 1 2G 3.09E+8† 
30 11 8 1 8G 4.95E+9† 
32 11 8 1 32G 7.92E+10† 

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518. 
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each. 
†Results are projected using a performance estimation model. 

Finally, we implement the dual-sequential-CMAC architecture with OBM and use the data  

streaming technique. The algorithm matrix elements are streamed in during computation and only 

the state vectors require storage. As a case study for this technique, we emulated our proposed 

multi-pattern Grover's search algorithm, see Fig. 34. The target patterns were set to {1 11 2 13 4 

15 6 7}, where each number corresponds to the index of a target state we are searching for. Output 

results demonstrated high probability amplitudes identifying the target states, and these were 

verified against results obtained from software simulations in MATLAB. The hardware 

implementation results are shown in Table 19. For our experimental setup, we utilized 2×32 GB 

SDRAM banks to store the input and output quantum state vectors respectively, while the input 

algorithm matrix elements were streamed in. This allowed emulation of a higher number of qubits, 

i.e., 32. The space complexity of this architecture is 𝑂𝑂(1), as there are only two operating CMACs. 

The time complexity is 𝑂𝑂(𝑁𝑁2) due to the computation of 𝑁𝑁2 elements of the algorithm matrix, see 
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Table 4. Hardware builds of up to 32-qubit circuits for Grover's algorithm were performed on a 

single FPGA with 32 GB SDRAM memory. Emulation times for circuits larger than 22 qubits 

were estimated using the performance model derived from (18), (20), and (22).  

 

Fig. 54: Grover’s search algorithm emulation using dual-sequential-CMAC Architecture, 
on-board memory, and streaming. 

 

The emulation time as a function of the number of qubits is shown in Fig. 54. A sustained 

operating frequency of 233 MHz was reported by the hardware compiler for these 

implementations, indicating very high throughput as a result of a fully pipelined dataflow design. 

The streaming technique does not require any generation hardware and therefore can be used to 

emulate any quantum algorithm that is reducible to a single unitary transformation. The complexity 

of the algorithm does not affect the performance of emulation. Therefore, emulation of other 

algorithms would yield the same results in terms of hardware utilization and emulation time. The 

reconfigurable architecture of our emulator allows improvement of the time complexity to 𝑂𝑂(𝑁𝑁) 

by instantiating 𝑁𝑁 parallel instances of CMAC units for vector matrix multiplications. To emulate 

a larger number of qubits using the single CMAC approach, the amount of on-chip resources, 

and/or on-board memory would need to be increased. Other approaches include adopting multi-

CMAC architectures, and/or using a multi-node architecture where the design is partitioned among 
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the nodes. In other words, scaling to higher quantum circuit sizes would require using more 

hardware resources such as on-chip resources (OCR), on-board memory (OBM), number of 

CMACs, or the number of FPGA nodes. 

7.3.3 Implementation of QHT using Kernel-based Emulation 

We performed experiments to evaluate our proposed kernel-based emulation, see Fig. 26, using 

QHT algorithm as a use case. Hardware architectures for emulation of 1D-QHT and 2D-QHT, see 

Fig. 33, were implemented using C++ on the DS8 programming environment. Input images with 

resolution of up to 1024×1024, and 256 shades of grayscale pixels, were used to test the designs. 

MATLAB was used to convert the images into greyscale, generate the input vectors for DS8, and 

reconstruct images from the output vectors. Synthesis and hardware builds were performed using 

Quartus Prime Version 17.02 on the DS8 environment. Fig. 55(a) shows one of the input images 

converted to greyscale, Fig. 55(b) is the output after a 1D-QHT operation with 1 level of 

decomposition. Fig. 55(c) is the output after a 1D-QHT operation with 2 levels of decomposition 

and Fig. 55(d) shows the reconstructed images after a 1D-IQHT operation was applied. Figs. 56(a) 

to 56(d) show the results from repeating the experiment using the 2D-QHT and 2D-IQHT 

architectures. 
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(a) Original image 

 
(b) 1-level 1D-QHT 

  
(c) 2-level 1D-QHT (d) Reconstructed image using 1D-IQHT 

Fig. 55: Experimental results of 1D-QHT emulation using kernel-based architectures. 
  

  
(a) Original image 

 
(b) 1-level 2D-QHT 

  
(c) 2-level 2D-QHT (d) Reconstructed image using 2D-IQHT 

Fig. 56: Experimental results of 2D-QHT emulation using kernel-based architectures 
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Table 20: 1D-QHT Implementation Results on Arria 10 FPGA 
Number of 

pixels 
Number of 

qubits 
Resource Utilization* (%) SDRAM** 

(bytes) 
Emulation 
time (sec) ALMs BRAMs DSPs 

16x16 8 11 8 1 4K 0.00018 
32x32 10 11 8 1 16K 0.00071 
64x64 12 11 8 1 64K 0.00285 

128x128 14 11 8 1 256K 0.01139 
256x256 16 11 8 1 1M 0.04557 
512x512 18 11 8 1 4M 0.18226 

1024x1024 20 11 8 1 16M 0.72905 
*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518. 
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each. 

Table 21: 2D-QHT Implementation Results on Arria 10 FPGA 
Number of 

pixels 
Number of 

qubits 
Resource Utilization* (%) SDRAM** 

(bytes) 
Emulation 
time (sec) ALMs BRAMs DSPs 

16x16 8 14 9 2 4K 0.00012 
32x32 10 14 9 2 16K 0.00047 
64x64 12 14 9 2 64K 0.00187 

128x128 14 14 9 2 256K 0.00746 
256x256 16 14 9 2 1M 0.02982 
512x512 18 14 9 2 4M 0.11926 

1024x1024 20 14 9 2 16M 0.47704 
*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518. 
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each. 

Resource utilizations from the hardware implementations are summarized in Tables 20 and 21 

for 1D and 2D respectively. The on-chip resources (ALMs, BRAMs, DSPs) are used up in 

implementing the static components of the design such as counters, adders, shift operators, etc. 

and hence are constant as the emulated circuit size (number of qubits) increases. The low on-chip 

resource utilizations indicate that our proposed approach and emulation architecture designs are 

highly space-efficient. The 1D-QHT architecture consumes lower on-chip resources than 2D-

QHT, due to its less complex kernel operations. The low resource utilizations also indicate the 

flexibility of the QHT and IQHT designs for integrating with larger algorithms. 

The SDRAM memory requirements for storage of the input and output images as quantum 

state vectors are also reported in Tables 20 and 21. For the highest resolution image of size 

1024×1024, the pixels occupy 25% of the total on-board SDRAM memory (64 GB) available on 

a single DS node. The pixels of the input images are encoded as basis coefficients of a quantum 
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state. For example, to store 16×16 or 256 pixels, we need 256 complex coefficients each of which 

have a real and imaginary component occupying total 2×4=8 bytes in 32-bit floating point 

representation. Therefore, for storing both input and output images, 2×256×8 = 4096 bytes of 

memory was required. The obtained memory usages for larger QHT circuits are consistent with 

expected values. 

The hardware designs on the FPGA were pipelined to ensure a constant and high operating 

frequency of 233 MHz. The obtained emulation times for high resolution images are also feasible. 

For a 1024×1024 image, 20 qubits were sufficient for achieving dimension reduction using 1D 

and 2D QHT. From our experimental results, we observe that the emulation time increases linearly 

with increase in the number of image pixels (states), as illustrated by Fig. 57. This is because a 

large portion of the emulation time is dedicated to writing in and reading out the input/output state 

vectors of size 𝑁𝑁 (number of pixels) hence the emulation time complexity is 𝑂𝑂(𝑁𝑁). This indicates 

the benefit of using quantum encoding of data, i.e., encoding each image pixel as a basis state 

coefficient in the quantum state space. Finally, the emulation times for 1D-QHT are higher than 

2D-QHT because of the higher number of iterations 𝑁𝑁 2⁄  in the 1D algorithm, compared to 𝑁𝑁 4⁄  

iterations in the 2D algorithm, see Algorithms A1 and A2 in the appendix. 

 
 

Fig. 57: Emulation time as a function of data size (number of pixels). 
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In general, on a classical emulation platform, the emulation execution time increases with both 

the spatial and temporal complexities of the quantum circuit. In other words, the emulation time 

of a quantum circuit on a classical platform is generally a function of both the circuit width 

(number of qubits) and depth (number of gate levels). Due to optimizations and encoding 

techniques we used, the emulation time of our proposed emulation architectures is a function of 

only the quantum circuit width (number of qubits), as shown by our experimental results. On state-

of-the-art superconducting NISQ devices  [14] [71], the execution time is a function of only the 

depth (number of gate levels) of the circuit [72]. For our proposed 1D-QHT and 2D-QHT circuits, 

which are simple quantum circuits of depth 1, we estimate an execution time of 0.01ms on a typical 

NISQ device processing a 7×7 qubit array with sampling frequency of 100 KHz [72]. The 

estimated execution time is constant for a fixed circuit depth and variable number of qubits in the 

quantum processing unit (QPU) array, i.e., the time complexity is theoretically 𝑂𝑂(1). In 

comparison, the time complexity of our emulation is 𝑂𝑂(𝑁𝑁). 

7.3.4 Implementation of QHT using MATLAB and IBM Quantum 

The quantum circuits for sequential and parallel QHT, see Fig. 31, were evaluated on the IBM 

Quantum system. Simulations were performed using the IBM qasm simulator, while real 

implementations were performed on the 15-qubit real quantum processor, ibmq_16_melbourne. 

For reference, noise-free simulation models of the QHT circuits were also developed and 

implemented in MATLAB. The test data used were 64 × 64 × 3 RGB-images and high-resolution 

1024 × 1344 × 33 multi-spectral images. Zero-padding was used to extend the number of 

datapoints to powers-of-2 in each dimension for the proper operation of the QHT kernel. Fig. 58(a) 

shows a 64 × 64 × 3 input image and Figs. 58(b) and (c) show the corresponding output images 

after 1 level of parallel (1-stage) 3D-QHT packet decomposition performed in MATLAB and IBM 
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Q simulations, respectively. After 1-level (𝑙𝑙 = 1) 3D-QHT, the dimensions were reduced by a 

factor of 1
21

= 1
2
, where 𝑙𝑙 is the number of decomposition levels. There was distortion in output 

images from the IBM Q simulation, due to the statistical noise that was generated during 

measurement of the output.  

 
(a) Original 64x64 pixel RGB Images 

 

 
(b) Output images from MATLAB simulations after 1-level 3D-QHT 

 

 
(c) Output images from IBM Q simulations after 1-level 3D-QHT. 

 
Fig. 58: Test RGB image data and output image results from MATLAB and IBM Q simulations. 

     
Original multi-

spectral image in 
RGB representation 

Image band # 01 
 
 

Image band # 15 
 

Image band # 22 Image band # 33 

    
Image band #01 
after 2-level 3D-

QHT 

Image band #15 
after 2-level 3D-

QHT 

Image band #22 
after 2-level 3D-

QHT 

Image band #33 
after 2-level 3D-

QHT 
     

Fig. 59: Test multi-spectral images and output images from MATLAB simulations. 

Fig. 59 shows a 1024 × 1344 × 33 multi-spectral image in RGB representation, four of its 

spectral bands, and the corresponding decomposed image bands after 2-level (𝑙𝑙 = 2) 3D-QHT 
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packet decomposition, where each dimension is reduced by a factor of 1
22

= 1
4
. The experiments 

were repeated using MATLAB models for sequential (3-stage) 3D-QHT, producing consistent 

results. It was not possible to implement the circuits for multi-spectral images on IBM Q due to 

simulator and hardware limitations. 

Table 22: Theoretical expectations and experimental results for 14-qubit 3D-QHT using IBM-Q. 
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Theoretical Expectations and Metrics:  

Theoretical run-times were estimated, see Table 22, for the proposed QHT circuit variants using 

real gate times of the ibmq_16_melbourne machine. The theoretical run-times in Table 22 refer to 

expected run-times of the 14-qubit QHT circuits used for the test RGB images. The relative 

improvement between unoptimized and optimized circuits serves as a reference point to which we 

can compare the measured experimental run-times. We measured the gate times for SWAP and H 

gates on the IBM-Q systems to be 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 = 2229.33 ns and 𝜏𝜏𝐻𝐻= 53.333 ns respectively, and 

calculated realistic run-times for each circuit using the time-delay expressions from (36)-(39). The 

proposed optimizations provide theoretical speedups of 4.2515 and 4.1848 fold for sequential and 

parallel QHT, respectively, see Table 22. Comparing the optimized parallel with the unoptimized 

sequential circuit shows a 9.3695 speedup. 

𝐶𝐶𝐶𝐶𝑅𝑅 =
T2

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏𝐻𝐻𝑜𝑜𝑖𝑖−𝑜𝑜𝑖𝑖𝑖𝑖𝑝𝑝 (54) 

 

We define circuit coherence ratio (CCR) in (54), as a metric to evaluate how coherent a given 

circuit is by comparing its execution time to the system decoherence time T2. A CCR greater-than-

unity corresponds to a coherent circuit, while a CCR less-than-unity corresponds to a decoherent 

circuit. The CCR is calculated for each of the proposed circuit variants, see Table 22. CCR for the 

unoptimized sequential circuit is less-than-unity which indicates that the circuit violates the 

decoherence time constraint. CCR for the optimized sequential circuit is greater-than-unity which 

indicates that the circuit execution time is within the decoherence time constraint. Thus, the 

proposed optimizations are favorable for improving coherence of the sequential QHT circuits. The 

optimizations for parallel QHT also significantly improve the respective CCRs from 1.32 to 5.54, 

see Table 22. We also verified the correctness and evaluated the accuracy of each circuit by 
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measuring the state fidelity as defined in (53). By comparing fidelities among the circuit variants, 

see Table 22, we determined how effective the optimizations were in reducing circuit depth and 

improving coherence and state-fidelity.  

Table 22 also shows the simulation run-times and fidelities obtained for each of the 

implemented circuit variants. Run-times were measured for QHT circuits with qubit state-

initialization (using image data) which resulted in very deep circuits. The additional time-delay 

(overhead) of state-initialization circuit is much larger than the actual QHT circuit execution time. 

This results in lower speedups for simulation compared to theoretical speedups that only take into 

account the QHT circuit execution time. 

The circuit output measurements were obtained on a 14-bit classical register using multiple 

shots (samples) to minimize the statistical noise of measurements. The state fidelities were 

measured from 8000-shot simulations. For QHT circuits without state-initialization, the fidelities 

were above 99%. However, the circuit fidelities decreased because of the additional circuit 

required for state-initialization with the image data which introduced more noise to the measured 

results. Comparing the sequential (unoptimized) with parallel (optimized), the fidelity improved 

from 72.21% to 72.35% for sequential QHT, and from 72.58% to 72.64% for parallel QHT.  

Hardware implementations were also performed on the ibmq_16_melbourne quantum 

processor and the obtained run-times and fidelities are shown in Table 22. Qubit state-initialization 

with image data could not be implemented, as the resulting circuits were too large, and run-times 

exceeded the device repetition and readout rate. The hardware run-times are in the range of 

seconds, compared to the simulation run-times which were in milliseconds. This is due to the 

unavoidable configuration overhead of the quantum processor, i.e., the time taken to generate 

control pulses of the quantum gates, which is much larger than the actual circuit execution time.  
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The fidelities measured from hardware executions are also shown in Table 22. Due to high 

sampling noise of the actual quantum hardware, the fidelities are lower than 55%. However, the 

fidelities improve as the circuits become optimized, see Table 22 For further improving the 

fidelities, quantum error correction is required before sampling the quantum circuit and forming 

the probability distribution data. Given the current status of the technology/tools, it's not possible 

to isolate the different types of run-time overhead, i.e., state-initialization overhead and hardware 

setup/configuration overhead, in experimental studies. The simulation and hardware run-times 

could consequently be incomparable. However, both experiments are useful to evaluate the effect 

of optimizations on relative run-times for each experiment. Therefore, in our results we have 

included the analysis of theoretical, simulation, and hardware experiments. 

7.4 Evaluation of Quantum Pattern Recognition 

We implemented the emulation architectures for the proposed quantum system for pattern 

recognition based on dimension reduction, see Fig. 39. The kernel-based emulation was used for 

multi-dimensional QHT emulation and CMAC-based emulation was employed for performing 

multi-pattern QGS. 32-bit floating-point precision was used to represent the real and imaginary 

components of the complex state coefficients for both emulators, and the architectures were fully 

pipelined for highest throughput. High resolution single-band and multi-spectral images were used 

as test data sets for the experiments. We have obtained implementation results emulating up to 32 

qubits on a single FPGA node, with an operating frequency of 233 MHz. 

The experimental results for the single-band images are presented in Table 23. In this 

experiment, multi-level 2D-QHT dimension reduction and pattern search using QGS was 

performed on single-band grayscale images of up to 64K×64K pixel size and using up to 32 

emulated qubits, see Table 23. Fig. 60(a) shows an example single-band grayscale image, Fig. 
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60(b) shows the reduced image after 1 level of 2D-QHT decomposition, and Fig. 60(c) shows the 

reduced image with pattern indices identifying a person in it with the help of QGS. A 10-qubit 

QGS circuit was emulated to perform pattern search on the reduced image data and output the 

pattern indices. 

Table 23: Quantum Pattern Recognition Implementation Results using Single-spectral 
Images on Arria 10 FPGA. 

No. of pixels No. of 
qubits 

No. of 
levels 

OCR* utilization (%) OBM**  
(bytes) 

Emulation 
time (sec)*** ALMs BRAMs DSPs 

128x128 14 3 22 16 2 128K 1.15E0 

256x256 16 4 22 16 2 512K 1.84E01 

512x512 18 5 22 16 2 2M 2.95E02 

1024x1024 20 6 22 16 2 8M 4.72E03 

2048x2048 22 7 22 16 2 32M 7.5E04 

4096x4096 24 8 22 16 2 128M 1.2E06 

8192x8192 26 9 22 16 2 512M 1.93E07 

16Kx16K 28 10 22 16 2 2G 3.09E08 

32Kx32K 30 11 22 16 2 8G 4.95E09 

64Kx64K 32 12 22 16 2 32G 7.92E10 
*Total on-chip resources: NALM = 427,000, NBRAM = 2,713, NDSP = 1,518 
**Total on-board memory: 2x32 GB SDRAM banks 
***Operating frequency: 233 MHz 

 

  

 

(a) Original image (b) 1-level 2D-QHT (c) Pattern identified in 
reduced image using QGS 

 
Fig. 60: Experimental results of 2D-QHT decomposition and QGS pattern recognition. 
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The FPGA resource utilization data shown in Table 23 refers to both the QHT and QGS circuit 

utilizations. The number of decomposition levels for 2D-QHT is increased as the input image size 

increases. This is done to keep the size of the reduced image to a fixed resolution, and therefore 

the QGS circuit can perform pattern search using a fixed number of qubits. The on-chip resources 

(ALMs, BRAMs, DSPs) are used for implementing the static components of the design such as 

counters, adders, shift operators, etc. and hence are constant as the emulated circuit size (number 

of qubits) increases. The low on-chip resource utilizations indicate that our proposed emulation 

architecture designs are highly space-efficient and highly scalable. The on-board memory is used 

to store the coefficients of the input and output quantum states and therefore the memory utilization 

increases exponentially with the number of qubits, making the emulation highly memory bound. 

The highest resolution image of size 64K×64K occupies a full 32 GB SDRAM bank. The image 

pixels are encoded as the quantum state coefficients which have 32-bit real and imaginary 

components and occupy 8 bytes each. A 64K×64K image contains 232 pixels and so the total 

memory required to encode it is 232 × 8 bytes, or 32 GB. The two 32 GB SDRAM banks on the 

FPGA node are utilized to store the input and output images respectively. 

The system emulation time obtained in Table 23 is a function of the emulation times for QHT 

and QGS. In previous experiments kernel-based emulation of QHT, our findings show that 

execution time of the kernel-based emulator increases linearly with the data size, i.e., number of 

states. As emulation times for QGS is the same due to a fixed circuit size, the overall system 

emulation time increases linearly with the number of states, N, as illustrated in Fig. 61.  
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Fig. 61: System emulation time as a function of data size. 

7.5 Evaluation of Quantum-to-Classical Data Decoding 

To evaluate the proposed and related Q2C data decoding methods, we conducted experiments 

on IBM Quantum using Qiskit for implementing the proposed quantum circuits. Simulations of 

the developed circuits were performed using QASM simulator. The number of circuit samples or 

shots for the experiments ranged from 1,024 to 16,384. Experimental evaluations of our proposed 

QHT-based method and the QFT-based approach reported in [16] were performed. The methods 

were evaluated in terms of overhead incurred and time efficiency. 

7.5.1 Characterizing measurement (circuit sampling) time on IBM QASM 

We characterized the circuit sampling time on the IBM QASM simulator as a function of number 

of qubits and number of shots. Measurement gates were applied across qubits that are initialized 

in their ground state and the number of qubits and shots were varied. The obtained execution times 

of the measurement gates (circuit sampling times) from the simulator are shown in Table 24 and 

Fig. 62. The measurement time increases linearly with the number of qubits for varying number 

of shots, as observed in Fig. 62. Based on the linear behavior, the measurement times for odd 

numbers of qubits were linearly interpolated from the datasets shown in Table 24 and Fig. 62 and 

used in the overhead analysis of the proposed Q2C method. 
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Table 24: Measurement timing data on IBM QASM simulator. 

 

 
Fig. 62: Measurement time as a function of number of qubits and number of shots 

on IBM QASM Simulator. 
 

7.5.2 Simulation of QFT-based Q2C 

The QFT-based method for Q2C was evaluated by simulating n-qubit QFT circuits. The 

number of qubits, n, was varied from 2 to 28 and the number of shots was varied  from 1,024 to 

16,384, see Table 25. Larger circuit simulations could not be performed due to simulator memory 
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limitations. The obtained results were consistent with our theoretical expectations. The execution 

time increases exponentially with the number of qubits and this behavior is consistent for higher 

number of shots. The experimental data for QFT will be used for quantitative comparison with our 

proposed QHT-based Q2C method.  

Table 25: Quantum Fourier Transform execution times on IBM QASM simulator 

 

7.5.3 Simulation of QHT-based Q2C 

We evaluated our proposed QHT-based method of Q2C by simulating multi-level packet and 

pyramidal decomposable, 2D and 3D-QHT circuits, varying the number of qubits, n from 4 to 32. 

The number of packet/pyramidal decomposition levels was varied from l to 𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑘𝑘𝑜𝑜 /𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚

𝑝𝑝𝑦𝑦𝐻𝐻  

respectively, see (34), and we obtained circuit depth measurements and circuit execution times. 

All data was collected for 16,384 shot simulations. The multi-level QHT circuits were highly 

optimized, resulting in significantly lower circuit depths compared to QFT which is consistent 

with our theoretical expectations, see Table 26. Moreover, the simplistic nature of quantum gates 

in the QHT circuit such as SWAP gates, as compared to controlled phase shift gates in the QFT 

[11], should theoretically incur lower execution time. 
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Table 26: Multi-level pyramidal decomposable 3D Quantum Haar Transform circuit depths 
compared to QFT circuit depths. 

 

Table 27 presents the execution timing data obtained from multi-level packet decomposable 

2D-QHT simulations on IBM Quantum. For comparison, also presented in Table 27 are the n-

qubit measurement timing data, which is the execution time of only measurement gates (without 

QFT or QHT) obtained from Table 24, and n-qubit QFT circuit execution timing data from Table 

25. For every 𝑙𝑙𝑜𝑜ℎ-level 2D-QHT decomposition, 𝑙𝑙 = 1,2, … , 𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑘𝑘𝑜𝑜 , the QHT circuit execution 

times, the reduced number of qubits k, and the corresponding k-qubit measurement times are also 

shown in Table 27. From this data we calculate the total time for 𝑙𝑙𝑜𝑜ℎ-level QHT as the sum of the 

2D-QHT circuit execution time and the corresponding k-qubit measurement time. In Table 27 we 

also present the speedup of QHT-based total time relative to general n-qubit measurement time 

(without QFT or QHT), calculated as shown in (55). Table 28 contains the same data collected 

from simulation of multi-level packet decomposable 3D-QHT. 

Speedup =
𝑞𝑞𝑖𝑖𝑝𝑝𝐻𝐻𝑑𝑑𝑜𝑜𝐻𝐻𝑝𝑝(𝑛𝑛)

𝑞𝑞𝑖𝑖𝑝𝑝𝐻𝐻𝑑𝑑𝑜𝑜𝐻𝐻𝑝𝑝(𝑘𝑘) + 𝑞𝑞𝑝𝑝𝑚𝑚𝑝𝑝𝑏𝑏
𝑄𝑄𝐻𝐻𝑄𝑄 =

𝑞𝑞𝑖𝑖𝑝𝑝𝐻𝐻𝑑𝑑𝑜𝑜𝐻𝐻𝑝𝑝(𝑛𝑛)
𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑄𝑄𝐻𝐻𝑄𝑄 (𝑛𝑛, 𝑙𝑙)

 (55) 
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Table 27: Multi-level packet decomposable 2D-QHT execution times compared to QFT 
simulation times on IBM QASM simulator. 

 

Table 28: Multi-level packet decomposable 3D-QHT execution times compared to QFT 
simulation times on IBM QASM simulator. 
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Table 29: Multi-level pyramidal decomposable 2D-QHT execution times compared to QFT 
simulation times on IBM QASM simulator. 

 

Table 30: Multi-level pyramidal decomposable 3D-QHT execution times compared to QFT 
simulation times on IBM QASM simulator. 
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Table 29 and 30 presents the execution timing data obtained from multi-level pyramidal 2D-

QHT and 3D-QHT simulations, respectively. Similar to previous experiments, the 𝑛𝑛-qubit 

measurement timing data is obtained from Table 24, and n-qubit QFT circuit execution timing data 

obtained from Table 25 is also shown. For every 𝑙𝑙𝑜𝑜ℎ-level decomposition, 𝑙𝑙 = 1,2, … , 𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑦𝑦𝐻𝐻 , the 

2D/3D-QHT circuit execution times, the reduced number of qubits 𝑘𝑘, and the corresponding 𝑘𝑘-

qubit measurement times are also shown in Tables 29 and 30. The total time for 𝑙𝑙𝑜𝑜ℎ-level 2D/3D-

QHT is calculated as the sum of the QHT circuit execution time and the corresponding 𝑘𝑘-qubit 

measurement time. The speedup of QHT-based total time relative to general n-qubit measurement 

time (without QFT or QHT) is calculated according to (55). 

7.5.4 Analysis of Results 

The QFT or the multi-level QHT-based methods incur overhead in the overall measurement 

time due to the additional QFT or QHT circuits, respectively. Using the data obtained from our 

experiments, we characterized the timing overheads of both methods. We also determined the 

speedups gained by use of the proposed packet and pyramidal QHT circuits relative to the general 

measurement method without QFT or QHT. For example, considering the data in Table 28, the 

measurement time for a 28-qubit circuit sampled for 16,384 shots is 281.05ms. If QFT-based 

sampling is applied, the equivalent 28-qubit QFT circuit adds a large overhead of 70s. Assuming 

that the number of shots required is now 1,024 as a result of QFT sampling, the reduction in 

measurement time from 16,384 shots to 1,024 shots, see Table 24, is much less compared to the 

increased overhead due to the added 28-qubit QFT circuit, see Table 25. Therefore, the overall 

effect is an increase in total execution time. 
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(a)  Packet 2D-QHT 

 
(b) Packet 3D-QHT 

 
(c) Pyramidal 2D-QHT 

 
(d) Pyramidal 3D-QHT 

Fig. 63: Speedups of the proposed multi-level QHT based Q2C methods as a function 
of number of qubits. 

 

Using the proposed pyramidal decomposable QHT-based sampling for the case when 𝑛𝑛 = 28 

and 𝑙𝑙 = 4, the number of qubits is reduced from 𝑛𝑛 = 28 to 𝑘𝑘 = 16, see Table 28. The reduced 

time taken for measurement is now 155.60ms, while the additional overhead of 4-level 3D-QHT 

is 1.07ms. Therefore the total time is 156.67ms, which is a 44.4% reduction relative to the time 

taken (281.05ms) for measuring all 28 qubits, and equivalent to a speedup of × 1.79. For 𝑛𝑛 = 32, 

the maximum number of decomposition levels 𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑦𝑦𝐻𝐻 , is 10, and applying 10-level 3D-QHT results 

in a × 8.8 speedup in measurement time. The speedups gained by the proposed QHT-based Q2C 

methods relative to the general measurement is presented as a function of number of qubits in Fig. 

63 for packet 2D-QHT, packet 3D-QHT, pyramidal 2D-QHT, and pyramidal 3D-QHT 
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respectively. It is worth mentioning that for a fixed level of decomposition of both packet and 

pyramidal decompositions, the speedup decreases with increase in the number of qubits, see Fig. 

63. This is because for large number of qubits n, the measurement times of k qubits become very 

close to the n-qubit measurement times, and the overhead due to QHT becomes relatively 

negligible such that the speedup asymptotically approaches unity, see (55) and Fig. 63. However, 

for a fixed number of qubits the speedup increases, as expected, with increase in the number of 

decomposition levels, see Fig. 63. It is also worth noting that the maximum speedup at a particular 

decomposition level is always higher for 3D-QHT compared to 2D-QHT for either packet or 

pyramidal which shows the efficiency of our proposed techniques for larger datasets of higher 

dimensions.  
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Conclusions 

Quantum computing is at its nascent stage, and it is the right time to explore all its possibilities 

and potential. There are numerous challenges to quantum computing technology, and in this work, 

we investigated and proposed solutions to several important quantum computing problems. We 

also demonstrated how classical reconfigurable hardware such as FPGAs can be efficiently utilized 

in emulating the behavior of quantum systems and algorithms. We proposed methodologies for 

performing classical-to-quantum (C2Q) data encoding and quantum-to-classical (Q2C) data 

decoding, and presented the corresponding optimized quantum circuits. We investigated several 

quantum algorithms such as Quantum Haar Transform, Quantum Grover’s Search and proposed 

circuit optimizations and extensions. A hardware-based emulation framework was developed for 

investigating quantum algorithms. An OpenCL-based methodology was used to develop and 

deploy emulation hardware architectures for quantum algorithms on HPRC systems. The 

flexibility of the proposed emulation framework allowed us to extend algorithms with newer 

capabilities, optimize algorithms, and combine algorithms to develop new applications. For 

example, a novel quantum application was proposed for pattern matching using quantum 

dimension reduction, that can be used in domains such as High-Energy Physics and Hyperspectral 

Remote-Sensing. We also explored architectural optimizations for the proposed emulation 

framework to achieve higher scalability, accuracy, and throughput, compared to existing 

emulators. Future directions of this work are integrating run-time full/partial reconfiguration with 

the proposed emulation framework, and developing methodologies for a multi-node (multi-FPGA) 

architectures for emulation of extreme-scale quantum circuits.  
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