
Towards Complete Emulation of Quantum Algorithms using High-
Performance Reconfigurable Computing

By

Naveed Mahmud
© 2022

Submitted to the graduate degree program in EECS and the Graduate Faculty of the University
of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Chair: Dr. Esam El-Araby

Dr. Prasad Kulkarni

Dr. Perry Alexander

Dr. Heechul Yun

Dr. Tyrone Duncan

Date Defended: July 1st, 2022

ii

The dissertation committee for Naveed Mahmud certifies that this is the approved version of the
following dissertation:

Towards Complete Emulation of Quantum Algorithms using High-
Performance Reconfigurable Computing

Chair: Dr. Esam El-Araby

Date Accepted: July 1st, 2022

iii

Abstract

Quantum computing is a promising technology that can potentially demonstrate supremacy

over classical computing in solving specific classically-intractable problems. However, in its

current nascent stage, quantum computing faces major challenges. Two of the main challenges are

quantum state decoherence and low scalability of current quantum devices. Decoherence is a

process in which the state of the quantum computer is destroyed by interaction with the

environment. Decoherence places constraints on the realistic applicability of quantum algorithms

as real-life applications usually require complex equivalent quantum circuits to be realized. For

example, encoding classical data on quantum computers for solving I/O and data-intensive

applications generally requires complex quantum circuits that violate decoherence constraints. In

addition, current quantum devices are of intermediate scale, having low quantum bit (qubit) counts

and often producing inaccurate or noisy measurements. Consequently, benchmarking of existing

quantum algorithms and the investigation of new applications are heavily dependent on classical

simulations that use costly, resource-intensive computing platforms. Hardware-based emulation

has been alternatively proposed as a more cost-effective and power-efficient approach. Hardware-

based emulation methods can take advantage of hardware parallelism and acceleration to produce

results at a higher throughput and lower power requirements.

This work proposes a hardware-based emulation methodology for quantum algorithms, using

cost-effective Field Programmable Gate Array (FPGA) technology. The proposed methodology

consists of three components that are required for complete emulation of quantum algorithms; the

first component models classical-to-quantum (C2Q) data encoding, the second emulates the

behavior of quantum algorithms, and the third models the process of measuring the quantum state

and extracting classical information, i.e., quantum-to-classical (Q2C) data decoding. The proposed

iv

emulation methodology is used to investigate and optimize methods for C2Q/Q2C data

encoding/decoding, as well as several important quantum algorithms such as Quantum Fourier

Transform (QFT), Quantum Haar Transform (QHT), and Quantum Grover’s Search (QGS). This

work delivers contributions in terms of reducing complexities of quantum circuits, extending and

optimizing quantum algorithms, and developing new quantum applications. For example,

decoherence-optimized circuits for C2Q/Q2C data encoding/decoding are proposed and evaluated

using the proposed emulation methodology. Multi-level decomposable forms of optimized QHT

circuits are presented and used to demonstrate dimension reduction of high-resolution data.

Additionally, a novel extension to the QGS algorithm is proposed to enable search for dynamically

changing multi-patterns of unordered data. Finally, a novel quantum application is presented that

combines QHT and dynamic multi-pattern QGS to perform pattern recognition using dimension

reduction on high-resolution spatio-spectral data. For higher emulation performance and

scalability of the framework, hardware design techniques and hardware architectural optimizations

are investigated and proposed. The emulation architectures are designed and implemented on a

high-performance reconfigurable computer (HPRC). For reference and comparison,

implementations of the proposed quantum circuits are also performed on a state-of-the-art quantum

computer. Experimental results show that the proposed hardware architectures enable emulation

of quantum algorithms with higher scalability, higher accuracy, and higher throughput, compared

to existing hardware-based emulators. As a case study, quantum image processing using multi-

spectral images is considered for the experimental evaluations. The analysis and results of this

work demonstrate that quantum computers and methodologies based on quantum algorithms will

be highly useful in realistic data-intensive domains such as remote-sensing hyperspectral imagery

and high-energy physics (HEP).

v

Acknowledgments

I would like to acknowledge the support and inspiration of my dissertation advisor Dr. Esam

El-Araby for always encouraging me to produce the best possible work. I am grateful for his

continuous motivation and guidance in this effort. I am honored to have Dr. Prasad Kulkarni, Dr.

Perry Alexander, Dr. Heechul Yun, and Dr. Tyrone Duncan as my dissertation committee

members, and I am grateful to them for their participation. I am also thankful to Dr. Prasad

Kulkarni for being an inspiring teacher and mentor during my Ph.D.

I would also like to acknowledge the support of my colleagues and team members of the KU

Advanced-Reconfigurable and Quantum computing (KUARQ) research group at the University of

Kansas. I am also thankful to my friends and community members in Lawrence, Kansas, for all

their good wishes. Finally, I am grateful to my parents for their belief in my abilities and to my

loving wife for her care and support. I would like to dedicate this dissertation to my family, without

whom my work and achievements would have no meaning.

vi

Table of Contents

Abstract .. iii

Acknowledgments .. v

Table of Contents ... vi

List of Figures ... x

List of Tables ... xiv

Chapter 1: Introduction ... 1

1.1 Prospect of Quantum Computing ... 1

1.2 Challenges and Motivation ... 2

1.3 Problem Statement .. 5

1.4 Research Goals and Approaches ... 6

1.4.1 Overview .. 6

1.4.2 Classical-to-Quantum Data Encoding .. 7

1.4.3 Emulation of Quantum Algorithms ... 8

1.4.4 Quantum-to-Classical Data Decoding ... 9

Chapter 2: Background and Related Work ... 11

2.1 Quantum Computing ... 11

2.1.1 Qubits, Superposition, and Entanglement .. 11

2.1.2 Quantum Gates ... 13

2.2 Quantum Algorithms .. 15

2.2.1 Quantum Fourier Transform .. 15

2.2.2 Quantum Wavelet Transform .. 16

2.2.3 Quantum Grover’s search .. 18

vii

2.3 CPU/GPU-based Software Simulators ... 21

2.4 FPGA-based Hardware Emulators .. 22

Chapter 3: Classical-to-Quantum Encoding ... 24

3.1 Related Work .. 24

3.2 Proposed Methods ... 26

3.2.1 Method 1: State Synthesis with Global Scale and Phase ... 27

3.2.2 Method 2: State Synthesis with Unity Global Scale .. 32

3.2.3 Analysis of Circuit Depth for Proposed Methods .. 34

3.3 Hardware Architectures for Emulating Classical-to-Quantum Encoding 37

Chapter 4: Quantum Algorithm Emulation .. 39

4.1 Gate-based Emulation Model ... 39

4.1.1 Modeling Quantum Gates .. 39

4.1.2 Modeling Tensor Operations ... 40

4.1.3 Modeling Quantum Circuits .. 41

4.2 CMAC-based Emulation Model ... 46

4.2.1 CMAC Architectures ... 48

4.2.1 CMAC Computation Techniques .. 50

4.3 Kernel-based Emulation Model .. 53

Chapter 5: Quantum-to-Classical Decoding ... 56

5.1 General Approach ... 56

5.2 Quantum-to-Classical Decoding Using Quantum Fourier Transform 57

5.3 Quantum-to-Classical Decoding Using Quantum Haar Transform 59

Chapter 6: Proposed Use Cases .. 61

viii

6.1 Dimension Reduction using Quantum Wavelet (Haar) Transform 61

6.1.1 Methodology Overview ... 62

6.1.2 Optimized Quantum Circuits ... 64

6.1.3 Hardware Architectures for Emulating Quantum Haar Transform 70

6.2 Dynamic Multi-Pattern Search using Quantum Grover’s Search 74

6.2.1 Proposed Methodology .. 75

6.2.2 Implementation .. 76

6.2.3 Modified Oracle and Diffusion Circuits .. 77

6.2.4 Quantum State Permutation ... 79

6.2.5 Hardware Architectures for Emulating Quantum Grover’s Search 82

6.3 Quantum Pattern Recognition ... 86

6.3.1 Methodology Overview ... 86

6.3.2 Quantum Circuits ... 87

6.3.3 Considerations for Practical Quantum Pattern Recognition .. 91

Chapter 7: Experimental Results and Analysis ... 92

7.1 Experimental Platforms .. 92

7.1.1 DirectStream .. 92

7.1.2 Xilinx Alveo ... 93

7.1.3 IBM Quantum .. 95

7.2 Evaluation of Classical-to-Quantum Data Encoding .. 97

7.2.1 C2Q Method 1 Experiments .. 97

7.2.2 C2Q Method 2 Experiments .. 103

7.3 Evaluation of Quantum Algorithms .. 107

ix

7.3.1 Implementation of QFT and Grover’s search using Gate-based Emulation 107

7.3.2 Implementation of QFT and Grover’s search using CMAC-based Emulation 111

7.3.3 Implementation of QHT using Kernel-based Emulation ... 121

7.3.4 Implementation of QHT using MATLAB and IBM Quantum 125

7.4 Evaluation of Quantum Pattern Recognition .. 130

7.5 Evaluation of Quantum-to-Classical Data Decoding .. 133

7.5.1 Characterizing measurement (circuit sampling) time on IBM QASM 133

7.5.2 Simulation of QFT-based Q2C .. 134

7.5.3 Simulation of QHT-based Q2C ... 135

7.5.4 Analysis of Results .. 139

Conclusions ... 142

References ... 143

Appendix ... 147

x

List of Figures

Fig. 1: Overview of the proposed emulation system. ... 6

Fig. 2: Bloch sphere representation of a qubit .. 12

Fig. 3: Quantum gates, gate symbols, and matrix representations. .. 14

Fig. 4: Quantum circuit and corresponding transformation matrix for n-qubit QFT. 16

Fig. 5: Quantum circuits for Grover’s search algorithm. .. 20

Fig. 6: Pauli decomposition for single-qubit state synthesis. ... 28

Fig. 7: Conditional logic-based quantum circuit for arbitrary state synthesis. The white and black

circles on the control qubits represent bit values of zero and one respectively. 29

Fig. 8: Factorization of the Uj transformation. ... 30

Fig. 9: Expanded full quantum circuit for arbitrary state synthesis. ... 30

Fig. 10: Simplified full quantum circuit for arbitrary state synthesis. .. 31

Fig. 11: Decomposition of a uniformly controlled 3-qubit Ry rotation operation. 31

Fig. 12: Quantum circuits for C2Q data encoding with unity global scale. 34

Fig. 13: Hardware architectures for emulating C2Q data encoding. .. 37

Fig. 14: Data structure for storing information for a single qubit. .. 39

Fig. 15: Emulating Hadamard (H) gate. ... 40

Fig. 16: Emulating tensor operations. ... 41

Fig. 17: Hardware architecture for design space sharing. ... 42

Fig. 18: Modeling a 5-qubit Quantum Fourier Transform circuit using tensor operations. 42

Fig. 19: Space-shared (partitioned) hardware models for 5-qubit QFT circuit. 43

Fig. 20: Hardware architecture for space-time sharing. .. 44

Fig. 21: Hardware models for 5-qubit Grover’s search algorithm. .. 46

xi

Fig. 22: CMAC-based emulation model ... 47

Fig. 23: Complex multiply-and-accumulate unit. ... 48

Fig. 24: Hardware architecture for dynamic generation of the QFT algorithm matrix 52

Fig. 25: Architecture of the stream-based CMAC quantum emulator. ... 53

Fig. 26: Kernel-based model for quantum algorithm emulation. ... 54

Fig. 27: Algorithm and hardware kernel architectures for emulation of 1D-QHT. 55

Fig. 28: Methodology overview for QFT-based quantum-to-classical data decoding 58

Fig. 29: Methodology overview for QHT-based quantum-to-classical data decoding 59

Fig. 30: Dimension reduction using multi-level, multi-dimensional QHT and IQHT. 63

Fig. 31: Quantum circuits for Sequential and Parallel QHT. .. 65

Fig. 32: Multi-level decomposition of d-dimensional QHT. .. 68

Fig. 33: Hardware architectures for emulation of 1D-QHT and 2D-QHT. 74

Fig. 34: Proposed/modified quantum circuit for multi-pattern Quantum Grover’s Search. 75

Fig. 35: Modified oracle circuits for the proposed multi-pattern Quantum Grover’s Search 78

Fig. 36: Permutation circuits for multi-pattern Quantum Grover’s Search. 81

Fig. 37: Stages of the permutation operation on a quantum state vector. 84

Fig. 38: Hardware index scheduler modeling quantum permutation for Grover’s search. 85

Fig. 39: Overview of methodology for pattern recognition using dimension reduction. 87

Fig. 40: DirectStream (DS8) system architecture. .. 92

Fig. 41: Xilinx Alveo System Architecture and Timing Profile. .. 94

Fig. 42: The ibmq_16_melbourne processor connectivity and layout .. 96

Fig. 43: Original and reconstructed images from synthesized quantum states. 99

Fig. 44: C2Q emulation run-times on different platforms. ... 102

xii

Fig. 45: Simulation times of C2Q encoding methods on IBM QASM Simulator. 106

Fig. 46: Hardware execution times of C2Q encoding methods on ibmq manila. 106

Fig. 47: Original and reconstructed 64x64x3 pixel images for different C2Q methods: (a)

originalimage, (b) proposed, fidelity 81.95% (c) IBM State Initialization, 82.19% (d) IBM State

Preparation, fidelity 81.99% (e) NEQR, fidelity 63% (f) FRQI, fidelity 57.15% 107

Fig. 48: Experimental results for Grover’s search. ... 111

Fig. 49: QFT on-chip resource utilizations using single-CMAC architecture and lookup. 112

Fig. 50: QFT on-chip resource utilization using N-concurrent-CMAC architecture and lookup.

... 113

Fig. 51: QFT on-chip resource utilization using dual-sequential-CMAC architecture and lookup.

... 114

Fig. 52: Comparison of QFT emulation times using CMAC architectures with on-chip memory.

... 115

Fig. 53: Comparison of QFT emulation times using CMAC architectures with on-board memory.

 .. 117

Fig. 54: Grover’s search algorithm emulation using dual-sequential-CMAC Architecture, on-

board memory, and streaming. .. 120

Fig. 55: Experimental results of 1D-QHT emulation using kernel-based architectures. 122

Fig. 56: Experimental results of 2D-QHT emulation using kernel-based architectures 122

Fig. 57: Emulation time as a function of data size (number of pixels). 124

Fig. 58: Test RGB image data and output image results from MATLAB and IBM Q simulations.

... 126

Fig. 59: Test multi-spectral images and output images from MATLAB simulations. 126

xiii

Fig. 60: Experimental results of 2D-QHT decomposition and QGS pattern recognition. 131

Fig. 61: System emulation time as a function of data size. .. 133

Fig. 62: Measurement time as a function of number of qubits and number of shots 134

on IBM QASM Simulator. .. 134

Fig. 63: Speedups of the proposed multi-level QHT based Q2C method as a function 140

of number of qubits. .. 140

xiv

List of Tables

Table 1: Analysis of circuit depths for proposed C2Q methods. .. 35

Table 2: Comparison of C2Q methods in terms of circuit depth. ... 36

Table 3: Reservation Table of Non-Linear Pipelined Architecture .. 45

Table 4: Space and Time Complexities of CMAC Architectures .. 49

Table 5: Simulation and Implementation of Proposed C2Q Circuits using IBM Q. 97

Table 6: Run-time results for emulation of C2Q using Xilinx Alveo. 101

Table 7: Implementations of C2Q encoding methods on IBM QASM Simulator. 105

Table 8: Implementations of C2Q encoding methods on a 5-qubit quantum processor. 105

Table 9: 5-Qubit QFT Resource Utilization for Multi-Node .. 108

Table 10: Grover’s Search (Hybrid Model) Resource Utilization for Single Node 108

Table 11: Grover’s Search (Full Gate Model) Resource Utilization for Single Node 108

Table 12: Operating Frequencies (MHz) .. 108

Table 13: QFT Implementation Results using Single-CMAC architecture, On-chip Resources,

and Lookup ... 112

Table 14: QFT Implementation Results using N-concurrent CMAC architecture, On-chip

Resources, and Lookup ... 113

Table 15: QFT Implementation Results using Dual-sequential CMAC Architecture, On-chip

Resources, and Lookup ... 113

Table 16: QFT Implementation Results using Single-CMAC Architecture, On-board Memory

and Lookup. .. 116

Table 17: QFT Implementation Results using dual-sequential-CMAC Architecture, On-board

Memory, and Lookup.. 117

xv

Table 18: QFT Implementation Results using Dual-sequential-CMAC Architecture, On-board

Memory, and Dynamic Generation. .. 118

Table 19: Grover’s Algorithm Implementation Results using Dual-sequential-CMAC

Architecture, On-board Memory, and Streaming. .. 119

Table 20: 1D-QHT Implementation Results on Arria 10 FPGA .. 123

Table 21: 2D-QHT Implementation Results on Arria 10 FPGA .. 123

Table 22: Theoretical expectations and experimental results for 14-qubit 3D-QHT using IBM-Q.

... 127

Table 23: Quantum Pattern Recognition Implementation Results using Single-spectral Images on

Arria 10 FPGA. ... 131

Table 24: Measurement timing data on IBM QASM simulator. .. 134

Table 25: Quantum Fourier Transform execution times on IBM QASM simulator 135

Table 26: Multi-level pyramidal decomposable 3D Quantum Haar Transform circuit depths

compared to QFT circuit depths. .. 136

Table 27: Multi-level packet decomposable 2D-QHT execution times compared to QFT

simulation times on IBM QASM simulator. ... 137

Table 28: Multi-level packet decomposable 3D-QHT execution times compared to QFT

simulation times on IBM QASM simulator. ... 137

Table 29: Multi-level pyramidal decomposable 2D-QHT execution times compared to QFT

simulation times on IBM QASM simulator. ... 138

Table 30: Multi-level pyramidal decomposable 3D-QHT execution times compared to QFT

simulation times on IBM QASM simulator. ... 138

1

Chapter 1: Introduction

Quantum computing is one of the promising technologies of today, but it is still in its nascent

development stage. The initial idea of a quantum computer was put forward by Benioff in 1980

[1], who theorized a quantum mechanical model for computing represented by Turing machines.

This was followed by significant contributions from Feynman who proposed simulating quantum

physics using a universal computing machine [2], and Deutsch who extended theories on quantum

computers and linked quantum physics with computing [3]. Later during the 90s, the introduction

of quantum algorithms for integer factoring and discrete logarithms by Shor [4], and a quantum

algorithm for database search by Grover [5] generated immense interest and triggered research and

development efforts towards quantum computers.

1.1 Prospect of Quantum Computing

At present, quantum technology is developing rapidly and promises an exciting future for

computing. The current state-of-the-art quantum computers are capable of processing hundreds of

quantum bits (qubits) and are termed as Noisy Intermediate-Scale Quantum (NISQ) devices.

Research is being conducted heavily to mitigate the noise in these systems, in order to achieve

fully fault-tolerant computation. It is estimated [6] that a quantum computer should be able to

process thousands of qubits, including error-correcting qubits, in order to achieve or exceed the

level of performance of existing classical systems. The event that quantum computers can

outperform classical machines has been termed as ‘quantum supremacy’ [7]. A research team led

by Google [8] has claimed experimental demonstration of quantum supremacy using their 53-qubit

Sycamore quantum processor [8]. They showed that Sycamore takes roughly 200 seconds to

sample a quantum circuit a million times, while the state-of-the-art classical supercomputer would

take thousands of years to complete an equivalent task. This demonstration greatly improves the

2

prospects for quantum computing. In particular, the ability of a quantum computer to solve NP-

hard problems [4] [5] [3] [9] which are classically intractable, is of great significance and interest.

For example, a quantum computer using Shor’s algorithm [4] could potentially solve large integer

factorization in polynomial time. Thus, existing security schemes such as Rivest Shamir-Adleman

(RSA), which are widely used in state-of-the-art cryptosystems, would be severely compromised

since these security schemes assume that factoring of large integers is intractable in polynomial

time. Another quantum algorithm of great interest is Grover’s search algorithm [5]. Grover’s

search can be used to find a specific item in an unordered list of 𝑁𝑁 items in 𝑂𝑂(√𝑁𝑁) time, achieving

quadratic speedup over the best classical search algorithms. There are also potential applications

of quantum computers in simulation of quantum systems in chemistry [10] and quantum mechanics

[2]. Another feasible application of quantum computers is in the field of image processing. Images

encoded in the quantum domain can be processed using quantum algorithms such as Quantum

Wavelet Transform (QWT) and Quantum Fourier Transform (QFT) [11] with greater time and/or

space efficiency compared to classical methods. The prospect of quantum computing is well

recognized by big technology companies such as IBM, Google, Intel, and Microsoft [12], as well

as new startups such as IonQ and Rigetti [12], and each is investing heavily in research and

development of quantum computing hardware and software.

1.2 Challenges and Motivation

Despite many companies having operational quantum hardware, the implementation of

realistic quantum algorithms and their equivalent circuits on quantum computing architectures is

extremely challenging. Quantum computers are highly sensitive to external environmental noise

and quantum hardware must be isolated and maintained in cryogenic temperatures. The process

by which the environment affects the state of a quantum computer is called quantum state

3

decoherence [11][13]. Interactions with the environment cause information to be lost and the

quantum state to collapse, i.e., lose its quantum mechanical properties. Decoherence is a

fundamental constraint for practical implementation of quantum circuits on quantum computers

[13]. A quantum circuit is generally modeled two-dimensionally, with the y-dimension (width)

representing qubits, and the x-dimension (depth) representing the levels of quantum

transformations or the circuit time-steps. The depth determines the execution time of the quantum

circuit, i.e., higher the depth, higher the circuit execution time. A quantum circuit must complete

execution within a constrained time frame before decoherence causes the state to collapse.

Therefore the depth of the circuit that can be implemented on a quantum computer is also limited.

For any quantum computing system, the decoherence time constraints are termed as T1 and T2

times [14] [15] and are determined by the quality of the underlying quantum technology. T1 is the

time taken for natural relaxation of the qubit to its ground state, while T2 is the time taken for the

qubit to get affected by environmental noise [15]. To mitigate the decoherence problem, methods

need to be investigated at the quantum device level to achieve higher T1 and T2 times. It is also

necessary to optimize quantum circuits to reduce depth, such that circuit execution times are less

than the system decoherence times.

Another critical challenge that arises because of decoherence time constraints is encoding

classical data onto the quantum computer, or classical-to-quantum (C2Q) data encoding [16]. A

quantum algorithm is a sequence of transformations on an initial quantum state, resulting in an

output quantum state. C2Q is the process of encoding classical data required by the algorithm onto

the initial quantum state. A state-preparation circuit is required to perform C2Q data encoding, in

addition to the circuit performing the quantum algorithm operations. For I/O intensive

applications, C2Q data encoding is problematic as the state-preparation circuit execution often

4

exceeds the decoherence time constraints of the system. The data encoding time becomes large

compared to the algorithm compute time, thus nullifying any computational benefits of the

algorithm alone, and having an adverse effect on overall system performance.

Measuring/observing the output of a quantum circuit and extracting useful classical data from the

output quantum state, or quantum-to-classical (Q2C) data decoding, is also another challenge [16].

Measurement/observation of any quantum state destroys the properties of that state, thereby data

encoded in that state is lost. To recover useful data about the output quantum state, the quantum

circuit is ‘sampled’ repeatedly, i.e., the circuit is executed multiple times and the output is

measured each time. Performing multiple circuit executions deteriorates the overall system time

complexity. The C2Q and Q2C processes are integral when benchmarking the performance of any

quantum system and/or algorithm. Improving only the computation component of any quantum

algorithm will not be sufficient if C2Q and Q2C components remain performance bottlenecks.

Therefore, it is vital to investigate time-efficient and decoherence-optimized quantum circuits for

C2Q and Q2C processes, along with improving and optimizing circuits for quantum algorithms.

The current state-of-the-art quantum computers are of intermediate scale, i.e., they have low

number of qubits relative to the actual number of qubits required to encode realistic problems.

Scaling up quantum systems is extremely challenging as it is difficult to maintain full physical

connectivity between the qubits. Moreover, the required addition of error-correcting qubits for

reducing errors make quantum systems less scalable. Building a quantum hardware and software

system is expensive too [17]. Consequently, it is very costly for users to gain access to these

systems. Researchers and students can have either limited access to these systems, or are limited

to only the small-scale systems with low qubit counts. The low scalability and noisy nature of

current NISQ-era quantum devices, as well as cost of access hinders research and slows the growth

5

of quantum computing knowledge. Efforts into simulation and emulation of quantum computers

have emerged consequently, to help researchers validate existing algorithms as well as evaluate

newer quantum algorithms. There exists a plethora of quantum simulators which require costly,

resource-intensive, and power-hungry supercomputing platforms to run quantum algorithms.

Therefore, there is a need for more cost-effective, resource-efficient, and power-efficient

simulators. Another class of simulators for quantum algorithms being developed are hardware-

based emulators. Hardware-based emulation methods can take advantage of hardware parallelism

and acceleration to produce results at a higher throughput. Most hardware-based emulators are

based on reconfigurable hardware such as Field-Programmable Gate Arrays (FPGAs) and

therefore are more cost-effective and power-efficient. However, current FPGA-based emulators

have low scalability, low accuracy, and low throughput. They can emulate only a small number

of qubits, use low-precision, and have low operating frequencies. Further investigation is needed

for performing scalable, high-precision, and high-throughput hardware-based emulation of

quantum algorithms.

1.3 Problem Statement

We identify that implementation of deep quantum circuits is a critical problem for current class

of quantum computers. Quantum circuit execution constraints put in place due to decoherence

make it difficult to efficiently perform classical-to-quantum (C2Q) data encoding, and quantum-

to-classical (Q2C) decoding in quantum systems. For I/O-intensive applications such as image

processing, it becomes impossible to transfer large amounts of data to/from the quantum computer.

As a result, investigation of I/O-intensive real-life applications on quantum computers is hindered.

In addition, current quantum computing systems have problems such as low qubit counts, noisy

low-fidelity outputs, and high cost of access. In this regard, there is a critical need for cost-

6

effective, power-efficient simulation/emulation platforms for verification and benchmarking

quantum algorithms. Existing simulators are generally based on costly supercomputing platforms

that consume a lot of resources and power. Alternatively, hardware-accelerated emulation is more

cost-effective, but existing hardware-based emulators face challenges such as low scalability, low

accuracy, and low throughput.

1.4 Research Goals and Approaches

1.4.1 Overview

Fig. 1: Overview of the proposed emulation system.

According to DiVincenzo’s criteria [18], a quantum computing system has the following

features: (a) a well characterized unit of storing information, i.e., a quantum ‘bit’ or qubit, (b)

ability to initialize/prepare the state of the qubits, (c) long decoherence times, (d) a universal set

of quantum gates, and (e) the ability to measure the final state of the quantum bits. The operation

of a quantum computing system has the following cycle: prepare input state, apply

transformations, and measure output state [16]. In this work, the primary research goals are to

perform realistic and complete emulation of such a quantum computing system [18], and to

evaluate quantum algorithms and quantum applications by emulation. The proposed approach for

emulation consists of three components, a C2Q data encoding model for state preparation and

initialization, a quantum algorithm emulator model for emulating quantum gates and algorithmic

7

computations, and a Q2C data decoding model for measuring quantum output state, as shown in

Fig. 1. The C2Q model emulates the process of state synthesis, i.e. encoding classical data onto a

state in the quantum domain. Our goal is to improve the C2Q process by developing faster data

encoding methods. We will investigate and propose space and time-efficient methods and efficient

quantum circuits for state-preparation and C2Q data encoding. Corresponding emulation

architectures for evaluating C2Q will also be presented. For emulating algorithms, a hardware-

based quantum algorithm emulator will be developed. We will propose and investigate different

emulation models for the quantum algorithm emulator, for investigating a variety of quantum

algorithms. We will discuss advantages and disadvantages of each model and the type of quantum

algorithm they are most suitable for. Different hardware design techniques and trade-offs will be

investigated for improving the performance and efficiency of the models and the emulator. A

variety of quantum algorithms will be investigated, including Quantum Fourier Transform (QFT),

Quantum Wavelet (Haar) Transform (QHT), and Quantum Grover’s Search (QGS). The Q2C

model, see Fig. 1, measures the output state of the algorithm, and extracts useful classical

information about the output quantum state. For the Q2C model two methods will be investigated.

In these methods, QFT and optimized QHT circuits will be utilized respectively to improve the

time complexity of the Q2C process.

1.4.2 Classical-to-Quantum Data Encoding

Initially, a survey and analysis of the existing methods for C2Q data encoding will be

performed. Our goal is to develop decoherence-optimized methods and circuits for C2Q and verify

their functionality and feasibility by emulation. A quantitative comparison of our proposed

methods with existing methods will also be provided. The process of synthesizing a quantum state

is called arbitrary state synthesis in the literature [19], and the circuit required is called state-

8

preparation and/or state-initialization circuit. Our aim is to investigate and develop state-

preparation circuits that have low spatial and temporal complexities, i.e., low gate count and low

circuit depth. For circuit synthesis generally recursive circuit methods have been proposed that

assume unity global scale and phase of qubits, and which result in large gate counts and circuit

depth. In our approach we use, instead, quantum multiplexor circuits that result in lower spatial

and temporal complexities. We then apply efficient decompositions to the multiplexor operations

and analyze the final circuit depth and gate count. We propose two methods for C2Q: Method 1,

which includes the global scale and phase of qubits, and Method 2, in which the global scale is

unity. Analysis of the corresponding circuit depths for both proposed methods will be performed

and compared to existing methods.

1.4.3 Emulation of Quantum Algorithms

At present there is a lot of work being done on large-scale simulation of quantum computers

[6] [20] [21] [22] [23] [24]. Quantum computing simulators are generally run on costly and

resource-intensive hardware platforms. On the other hand, FPGA-based hardware emulators have

shown that quantum circuits can be emulated at lower costs [25] [26] [27] [28] [29] [30], but lack

scalability, and have low accuracy and throughput. In this work, we aim to develop FPGA-based

emulation methods for quantum computing that are highly scalable, maintain the inherent

parallelism of quantum algorithms, maintain a high-level of accuracy and high-level of throughput.

The goal of this effort is to develop a methodology/framework that is flexible for investigating a

variety of quantum algorithms such as QFT, QHT, and QGS. The emulation framework will be

utilized to extend algorithms with newer capabilities, optimize algorithms, and combine algorithms

to develop new applications. For example, we will present the hardware architecture to

dynamically generate the transformation matrix of QFT during emulation. Quantum circuit

9

generalization and optimizations will be investigated for QHT for multi-dimensional data

processing. The circuits will also be extended for multi-level decomposable, multi-dimensional

QHT operations and optimizations will be applied to reduce circuit depth. Using the emulation

framework, we will also extend the conventional QGS circuit from static, single-pattern searching

to dynamic, multiple-pattern data search. Finally, a methodology for dimension reduction of

spatio-spectral data using multi-level decomposable, multi-dimensional QHT and pattern

matching using dynamic, multi-pattern QGS will be investigated and evaluated using the

emulation framework. The feasibility and usability of this methodology will be demonstrated

experimentally by a quantum image processing application. The proposed emulation framework

will use 32-bit floating point precision for higher accuracy, and a fully pipelined hardware

architecture for highest throughput. Emulation techniques based on complex multiply-and-

accumulation and kernel operations will be analyzed, and different methods of computation such

as lookup, dynamic generation, and streaming will also be investigated. Architectural

optimizations and area / speed trade-offs for these methods will also be explored for improving

the space and/or space-time complexities of the emulation.

1.4.4 Quantum-to-Classical Data Decoding

Measuring or observing the output state of a quantum circuit results in a non-deterministic

outcome [16]. To decode meaningful classical data from the output of a quantum circuit, the

general approach involves sampling the quantum circuit multiple times, and counting the

frequencies of the different outcomes. The outcome frequencies are then used to construct a

probability distribution with probability set {𝑃𝑃𝑖𝑖}, in which the set {�𝑃𝑃𝑖𝑖
2 } represent the output of the

quantum circuit. In this approach, there is significant overhead due to the repeated sampling of the

circuit. Another approach for Q2C data decoding, based on using the QFT, was proposed in [16].

10

However, the QFT-based approach is specific to image processing applications, and no

experimental evaluation was provided. In this work, we propose and evaluate a novel Q2C data

decoding method, based on using the QHT algorithm. The QHT algorithm can be effectively used

to reduce dimensionality of data while retaining both spatial and temporal locality, and thus

reducing the number of qubits required to represent the data. Therefore, the proposed QHT-based

approach will be effective in reducing the sampling overhead of the Q2C data decoding process.

In this work, we will demonstrate multi-level decomposable, multi-dimensional QHT circuits for

Q2C data decoding. Specifically, we will investigate the packet and pyramidal forms of

decomposition for two-dimensional (2D) and three-dimensional (3D) QHT. We will use

simulation on a quantum device to experimentally evaluate both the QFT and QHT based

approaches.

11

Chapter 2: Background and Related Work

2.1 Quantum Computing

The general and commonly adapted model of quantum computation is the gate-model [11]. In

this model, computation begins with the system set in an initial quantum state denoted as |𝜓𝜓𝑖𝑖𝑖𝑖⟩ in

the bra-ket or Dirac notation [31]. Depending on the quantum algorithm, a sequence of unitary

transformations comprised of gates, i.e., 0 1(, ,...,)MU U U , are applied to the input quantum state to

reach a final output quantum state |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩, see (1).

1 2 1...out m m inU U U Uψ ψ−= ⋅ ⋅ ⋅ ⋅ ⋅
 (1)

2.1.1 Qubits, Superposition, and Entanglement

The quantum bit or qubit is the smallest unit of quantum information [11]. A single qubit can

exist in superposition of two basis states, |0⟩ and|1⟩, which can be represented by a Bloch sphere

[11] as shown in Fig. 2. The north pole of the Bloch sphere represents the basis state |0⟩ while the

south pole represents the basis state |1⟩. Any other point on the surface of the sphere is a valid

pure state or superimposed state of the two basis states, denoted as |𝜓𝜓⟩. The overall state of the

qubit is satisfied by the linear superposition equation, see (2), where 𝛼𝛼 and 𝛽𝛽 are complex

coefficients, also termed as amplitudes, whose values depend on the azimuth and elevation angles

ϕ and 𝜃𝜃, respectively, as shown in Fig. 2. Algebraically, the qubit can be represented by a column

vector of the complex coefficients, see (2). When a qubit is measured, the superposition is lost,

and the qubit will collapse to a basis state. According to the Born rule [11], the magnitudes of the

complex coefficients/amplitudes, i.e., |𝛼𝛼|2 and |𝛽𝛽|2 represent the probabilities of measuring the

qubit in corresponding |0⟩ and |1⟩ basis states, respectively.

12

Fig. 2: Bloch sphere representation of a qubit

0 1
α

ψ α β
β

= + ≡

 (2)

Multiple qubits can form a quantum state. The state space represented by 𝑛𝑛 qubits is determined

by the Kronecker product, denoted by ⨂, of the individual qubit vector spaces, see (3). The 𝑛𝑛-

qubit quantum state can also be described as a superposition of 2𝑖𝑖 = 𝑁𝑁 basis states, generally

known as the computational basis [16], see (3), where 𝐶𝐶0,𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1 are the complex

coefficients/amplitudes of the basis states. Algebraically, the 𝑛𝑛-qubit state can be represented by a

column vector, termed as a state vector, comprising of the 𝑁𝑁 coefficients, see (3). An example of

a 3-qubit quantum state is shown in (4), where 0 7...C C are complex coefficients of the

computational basis states ranging from |000⟩ to |111⟩.

|𝜓𝜓⟩⨂𝑖𝑖 = |𝑞𝑞𝑖𝑖−1⟩⨂|𝑞𝑞𝑖𝑖−1⟩⨂. .⨂|𝑞𝑞1⟩⨂|𝑞𝑞0⟩ = �𝐶𝐶𝑖𝑖

𝑁𝑁−1

𝑖𝑖=0

|𝑖𝑖⟩ = �

𝐶𝐶0
𝐶𝐶1
⋮

𝐶𝐶𝑁𝑁−1

� (3)

|𝜓𝜓⟩⨂3 = 𝐶𝐶0|000⟩ + 𝐶𝐶1|001⟩ + ⋯+ 𝐶𝐶7|111⟩ (4)

Entanglement is another distinguishing property of qubits [11]. Two or more qubits may

become entangled meaning that each entangled qubit becomes strongly correlated to the other and

the quantum state cannot be factored into a Kronecker product of the individual qubits, i.e.,

13

1 2 1 0 1 2 1 0... ...n n n nq q q q q q q qψ − − − −= ≠ ⊗ ⊗ ⊗ . The benefit of quantum entanglement is that

operations on one entangled qubit can affect other entangled qubits. Likewise, measuring an

entangled qubit can give information about the state of other entangled qubits [16].

2.1.2 Quantum Gates

In gate-model quantum computing, quantum gates are the set of unitary transformations on

qubits and are analogous to classical logic gates [16]. Quantum gates are used to manipulate the

states of qubits and are represented by N N× unitary matrices where 2nN = and n is the number

of qubits. In other words, a one-qubit gate is represented by a 2×2 unitary matrix, a two-qubit gate

is represented by a unitary 4×4 unitary matrix, and so forth. Commonly used quantum gates like

the Hadamard (H), SWAP, controlled NOT (CNOT), controlled phase shift gate (𝑅𝑅𝑘𝑘), controlled

Pauli gates (cX, cY, cZ), rotation gates (Rx, Ry, Rz) and multi-controlled gates are discussed in the

next sections. The quantum gate symbols, and corresponding matrix representations are shown in

Fig. 3.

The Hadamard or H gate is an important single-qubit gate that creates a superposition of the

basis states with equal coefficients [11]. An H gate applied on the ground basis state 0 puts the

qubit to a resulting state with equal probability superposition between the 0 and 1 states, i.e.,

()1 0 1
2

+ . A set of Pauli X, Y, and Z gates [16] exist that equate to rotations around the x, y,

and z axes of the Bloch sphere respectively. The Pauli X gate symbol and matrix are shown in

Fig. 3. The SWAP gate is a two-qubit gate that simply exchanges the bit values provided as input

[11].

14

Fig. 3: Quantum gates, gate symbols, and matrix representations.

Any 1-qubit gate with matrix operation U can be extended to form a controlled U gate, see Fig.

3, where U00, U01, U10, U11 are the elements of the 2x2 matrix representation of U. A multiple-

controlled gate can be formed by adding multiple number of qubits controlling the operation of a

target qubit. The NOT gate is a single qubit gate that inverts the state of the qubit. A control qubit

can be added to a NOT gate to create a two-qubit gate referred to as controlled-NOT or CNOT.

When the control qubit is 1 then a NOT inversion will be applied to the other qubit, otherwise

the other qubit remains unchanged. The CNOT gate and its corresponding matrix is shown in Fig.

3. Control qubits can be added to the Pauli gates to create controlled Pauli gates cX, cY, and cZ,

which are used in many quantum algorithms. The operation of cX represents a rotation of 𝜋𝜋 around

the x-axis and is synonymous with the CNOT gate. The cY gate represents a rotation of 𝜋𝜋 about

15

the y-axis of the Bloch sphere. The cZ gate is a rotation of 𝜋𝜋 about the z-axis, and its gate and

matrix are shown in Fig. 3.

There exists a specific class of rotation gates for performing arbitrary rotations about the x, y,

and z axes of the Bloch sphere. These gates are important as they can be used to rotate a qubit into

any arbitrary state from the ground state and vice-versa. Thus, any arbitrary 1-qubit gate can be

decomposed into a sequence of rotation gates [16]. Additional control qubits can be added to the

rotation gates to form controlled rotation gates (Rx, Ry, Rz) that have important usage in arbitrary

state synthesis. The controlled phase shift gate, 𝑅𝑅𝑘𝑘 [11] is a similar 2-qubit gate that applies a phase

shift ie φ based on the control qubit, where 𝜙𝜙 = 2𝜋𝜋
2𝑘𝑘

 is the phase shift with period 2𝜋𝜋. The symbols

and matrices for these rotation gates are shown in Fig. 3.

2.2 Quantum Algorithms

2.2.1 Quantum Fourier Transform

Quantum Fourier Transform (QFT) is an integral part of many larger quantum algorithms such

as Shor’s algorithm for integer factoring [11]. QFT is the quantum equivalent of the classical

Discrete Fourier Transform (DFT). The input data samples for QFT are encoded as the basis state

coefficients/amplitudes of a superimposed quantum state. When performed on a quantum

computer, QFT can achieve exponential speedup over its classical counterpart. The mathematical

model and quantum circuit for QFT can be determined from the classical DFT as demonstrated in

[32]. The QFT algorithm transforms an arbitrary superposition of computational basis states to a

corresponding superposition of Fourier basis states and is represented by (6a), where |𝜓𝜓⟩ is the

quantum input state vector, and n is the number of qubits. The input signal samples are encoded

as a normalized amplitude sequence given by (6b). A generalized n-qubit QHT circuit composed

16

of H gates, 𝑅𝑅𝑘𝑘 and SWAP gates, is shown in Fig. 4. The QFT transformation can be represented

using a single unitary matrix, 𝑈𝑈𝑄𝑄𝑄𝑄𝑄𝑄, of size 𝑁𝑁 × 𝑁𝑁, as shown in Fig. 4, where 𝜔𝜔𝑖𝑖 = 𝑒𝑒
2𝜋𝜋𝜋𝜋
𝑛𝑛 .

|𝜓𝜓⟩ =

1
√2𝑖𝑖

 � 𝑓𝑓(𝑞𝑞𝑞𝑞𝑞𝑞)|𝑞𝑞⟩
2𝑛𝑛−1

𝑞𝑞=0

𝑄𝑄𝑄𝑄𝑄𝑄
�⎯�

1
√2𝑖𝑖

 � � 𝑓𝑓(𝑞𝑞𝑞𝑞𝑞𝑞)𝑒𝑒2𝜋𝜋𝑖𝑖(
𝑞𝑞𝑘𝑘
2𝑛𝑛)|𝑘𝑘⟩

2𝑛𝑛−1

𝑞𝑞=0

2𝑛𝑛−1

𝑘𝑘=0

 (6a)

� |𝑓𝑓(𝑞𝑞𝑞𝑞𝑞𝑞)|2
2𝑛𝑛−1

𝑞𝑞=0

= 1 (6b)

𝑈𝑈𝑄𝑄𝑄𝑄𝑄𝑄 =
1
√𝑁𝑁

⎣
⎢
⎢
⎢
⎢
⎢
⎡1
1
1
1
⋮

1
𝜔𝜔𝑖𝑖
𝜔𝜔𝑖𝑖2

𝜔𝜔𝑖𝑖3
⋮

1 𝜔𝜔𝑖𝑖𝑁𝑁−1

1
𝜔𝜔𝑖𝑖2

𝜔𝜔𝑖𝑖4

…
…
…

1
𝜔𝜔𝑖𝑖𝑁𝑁−1

𝜔𝜔𝑖𝑖
2(𝑁𝑁−1)

𝜔𝜔𝑖𝑖6 … 𝜔𝜔𝑖𝑖
3(𝑁𝑁−1)

⋮
𝜔𝜔𝑖𝑖
2(𝑁𝑁−1)

⋱
…

⋮
𝜔𝜔𝑖𝑖

(𝑁𝑁−1)(𝑁𝑁−1)⎦
⎥
⎥
⎥
⎥
⎥
⎤

Fig. 4: Quantum circuit and corresponding transformation matrix for n-qubit QFT.

2.2.2 Quantum Wavelet Transform

The wavelet-transform (WT) decomposes signals/data into its spatio-temporal spectral

components [33]. Unlike Fourier-transform, WT uses a set of non-sinusoidal functions, called

mother-wavelets, which are localized spatially and temporally [33], resulting in the preservation

of data spatial-locality. The computational speed of WT is higher than other transforms [33]

17

making it highly effective and commonly implemented in image processing applications. The first

and simplest WT was introduced by mathematician Alfred Haar [34] and is thus named the Haar

wavelet transform. The Haar mother wavelet function can be constructed using a unit step function,

as shown in (7a). The discretized version of the Haar wavelet function is defined in (7b).

Ψ(𝑞𝑞)𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑢𝑢(𝑞𝑞) − 2𝑢𝑢 �𝑞𝑞 −
1
2�

+ 𝑢𝑢(𝑞𝑞 − 1) (7a)

Ψ𝐷𝐷∗ = �
𝑖𝑖
𝑁𝑁�

=

⎩
⎪
⎨

⎪
⎧+1, 0 ≤ 𝑖𝑖 ≤

𝑁𝑁
2

−1,
𝑁𝑁
2
≤ 𝑖𝑖 ≤ 𝑁𝑁

0, otherwise

 (7b)

The discrete wavelet transform can be implemented as quantum Wavelet transform (QWT) [35]

in the quantum domain. The general QWT can be expressed [36] by:

() ()

1 1
2

0 0
. , where | . | 1

N N

q q
f q t q f q tψ

− −

= =

= ∆ ∆ =∑ ∑ (7c)

()

1 1

0 0

1 .
N N

QWT
j q

q jf q t j
KN

ψ
− −

= =

− = ∆ Ψ

∑∑

(7d)

()
1 1

0 0

1 .
N N

QWT
j q

q jf q t j
KN

ψ
− −

= =

− = ∆ Ψ

∑∑

where Ψ is the mother wavelet function in complex conjugate form, t∆ is the sampling period,

K is the wavelet-window-size in samples, 2nN = is the number of data samples represented as

the total number of quantum states, n is the number of qubits, ψ is the input state, and
QWT

ψ

is the output state. The expression for quantum Haar transform (QHT) can thus be derived using

the Haar wavelet function Ψ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, see (7d).

The Haar wavelet function can be generalized by quantum operations using 𝑛𝑛 qubits, and a 𝑑𝑑-

dimension kernel. The Haar unitary transformation, 𝑈𝑈𝑄𝑄𝐻𝐻𝑄𝑄, using 𝑑𝑑 entangled 𝐻𝐻 gates and 𝑛𝑛 − 𝑑𝑑

18

entangled 𝐼𝐼 gates is shown in (7e), where 𝐻𝐻 is the Hadamard gate and 𝐼𝐼 is the identity matrix. For

two-dimensional QHT (2D-QHT) with 𝑑𝑑 = 2, the transformation matrix can be derived as shown

in (7f).

𝑈𝑈𝑄𝑄𝐻𝐻𝑄𝑄 = 𝐼𝐼⨂(𝑖𝑖−𝑑𝑑)⨂𝐻𝐻⨂𝑑𝑑

where, 𝐻𝐻⨂𝑑𝑑 = 𝐻𝐻⨂𝐻𝐻⨂…⨂𝐻𝐻���������
𝑑𝑑

 , 𝐼𝐼⨂(𝑖𝑖−𝑑𝑑) = 𝐼𝐼⨂𝐼𝐼⨂…⨂𝐼𝐼�������
𝑖𝑖−𝑑𝑑

,

𝐻𝐻 = 1
√2
�1 1
1 −1� , 𝐼𝐼 = �1 0

0 1�

(7e)

𝑈𝑈𝑄𝑄𝐻𝐻𝑄𝑄2𝐷𝐷 = 𝐼𝐼⨂(𝑖𝑖−2)⨂𝐻𝐻⨂2

where, 𝐻𝐻⨂2 = 𝐻𝐻⨂𝐻𝐻 = 1
2
�
1 1 1 1
1
1
1

−1
1
−1

1
−1
−1

−1
−1
1
�

(7f)

2.2.3 Quantum Grover’s search

Grover’s search is a quantum algorithm that can be used to search over an unsorted list of N

elements [16]. The objective of this search algorithm is to find an element 𝑠𝑠 ∗ that satisfies

𝑓𝑓(𝑠𝑠∗) = 1 and holds (8) true, where 𝑠𝑠∗ belongs to the set { }1 2 3, , ,..., NS s s s s= , N is the cardinality

of S, and f is a Boolean function such that { }() 0,1f x → .

 1, if *
()

0, if *
x s

f x
x s
=

= ≠
 (8)

A quantum computer running Grover’s algorithm can perform the search in N queries

compared to the best classical search algorithm, resulting in a quadratic speedup [5]. Grover’s

algorithm can also be used to find multiple items/patterns from a list. A pattern is defined here as

a string of bits. To find multiple patterns, the total number of solutions must be known ahead of

running the algorithm [16]. When searching for multiple patterns, Grover’s algorithm will find any

19

of the target patterns with equal probability [16]. The inputs to Grover’s algorithm are the patterns

encoded as the basis states of a superimposed quantum state. Initially, the input state is in equal

superposition, i.e., their coefficients/amplitudes are equal, and therefore the probabilities of

locating any item in the list are also equal. To obtain this input state an H gate is applied to the

ground or zero state of each qubit. Two operations are then performed for an optimal number of

iterations on this initial state, namely, oracle (also called phase inversion and diffusion (also called

inversion about the mean) [16].

The oracle step or phase inversion operation [16], takes the input quantum state and inverts

the coefficients/amplitudes of the basis states representing the patterns for which we are searching

[16]. To see how this function works, let our oracle be denoted as oracleU , as shown in (9). If *x s≠

, then ()f x = 0 and x will have no change. Otherwise, x will be multiplied by −1, resulting

in a phase inversion for x .

 ()(1) f x
oracleU x x= −

𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖 = 𝐼𝐼 − 2|𝑥𝑥⟩⟨𝑥𝑥|
(9)

The general quantum circuit of the oracle is shown in Fig. 5(a). The X gates in Fig. 5(a) have

a dashed border indicating that the gate may or may not be needed for its corresponding qubit,

depending on the target pattern. An X gate should be placed if the basis state for the target qubit is

a 0 . For example, if the sought pattern is 0.....0 then an X gate should be placed on every qubit.

If 1.....1 is the target pattern, then there should be no corresponding X gates. Therefore, the

conventional oracle circuit must be modified every time the target input pattern changes.

20

(a) Circuit for oracle operation (b) Circuit for diffusion operation

Fig. 5: Quantum circuits for Grover’s search algorithm.

In the diffusion step, also called inversion about the mean operation or amplitude amplification

operation, the inverted coefficients/amplitudes will be amplified, and the other

coefficients/amplitudes will be attenuated [16]. This operation, denoted as diffusionU in (9), is done

by finding the mean value of all the amplitudes and inverting each amplitude about the mean. This

causes the positive amplitudes, which are close to but greater than the mean, to be attenuated while

the negated amplitudes, which are less than the mean, to be amplified [16]. The general quantum

circuit of the diffusion operation is shown in Fig. 5(b).

Repeating the two steps, i.e., oracle, and diffusion, consecutively will increase the target

amplitudes of the target patterns (basis states), thus increasing the probability that the quantum

state collapses to the target basis state(s). Boyer et al. [37] derived the optimal number of iterations,

𝑚𝑚, required for maximizing the probability of successful search, see (10), where 𝑁𝑁 is the size of

the unsorted list of elements, patternsN equals the number of solutions/patterns being searched for

such that patternsN N≤ , and 𝑘𝑘 = 1, 3, 5, 7, 𝐼𝐼 is an odd number. For single-pattern Grover’s

algorithm, the target pattern’s amplitude will be close to 1 at the end of 𝑚𝑚 iterations. For multi-

pattern Grover’s algorithm, each of the target patterns (basis states) will have equal but higher

amplitudes compared to the remaining basis state coefficients at the end of 𝑚𝑚 iterations.

21

𝑚𝑚 =

⎣
⎢
⎢
⎢
⎢

𝜋𝜋 ∙ 𝑘𝑘

4 sin−1 ��
𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑

𝑁𝑁 �
⎦
⎥
⎥
⎥
⎥

 (10)

2.3 CPU/GPU-based Software Simulators

The work in [22] demonstrated a massively parallel quantum simulator implemented on

different supercomputing platforms. Simulation of up to 48 qubits was performed, however, high

number of resources (1 petabyte memory) were consumed, and no software optimizations were

reported. A GPU-accelerated simulation of quantum annealing, and the Quantum Approximation

Optimization Algorithm (QAOA) was presented in [24], showing simulation of up to 40 qubits.

For this simulation, a large-scale supercomputer with around 4K Tensor Core GPUs distributed

over 936 nodes was utilized. The authors in [20] proposed a GPU-based simulator, showing

implementation of up to 25 qubits, while a minimal quantum circuit was used in the simulation

case study. The work in [38] also used GPUs and achieved simulation of entangled Hadamard

gates up to 21 qubits. In [23], the authors demonstrated simulation of up to 38 qubits using a GPU

accelerated platform. However, cost-prohibitive amounts of computing resources (2048 nodes and

24 cores/node) were dedicated in the simulation. One of the recent works on quantum simulation

[21] used a cluster supercomputing platform supported by the Alibaba group. In that work, the

authors demonstrated simulation of up to 144 qubits with circuit depth of 27 gate levels using

131,072 processors and 1 petabyte memory. However, they have not investigated any quantum

algorithms and the circuits consist of random gates. Furthermore, their simulator was shown to

evaluate only one out of all possible output states. The existing CPU/GPU-based quantum

simulators are costly since they consume large amounts of resources in terms of required number

22

of processors and system memory. The proposed FPGA-based emulation framework in this work

is much less resource-intensive and is therefore highly cost-effective compared to existing

CPU/GPU-based simulators.

2.4 FPGA-based Hardware Emulators

An assortment of work has also been done on hardware-based emulation of quantum circuits

using FPGAs. In [25] the authors presented a quantum processor that abstracted quantum circuit

operations into binary logic. The proposed system was shown to emulate up to 75 qubits. However,

the modeling methodology of the quantum operations was highly inaccurate due to the use of low

precision (1 bit) for the representation of state coefficients. Moreover, hardware cost in terms of

resource utilization was not reported. In [27] the authors implement an emulator based on a library

of quantum gates. The gate operations were implemented using fixed-point arithmetic, and a low

operating frequency of 82.4 MHz was reported for the emulation of 3-qubit QFT and Grover’s

search algorithm. In [39] the authors proposed a similar fixed-point emulator, reporting up to 3-

qubit QFT, but details regarding both their approach and the mapping of the quantum algorithm to

the proposed architecture are missing. Moreover, quantum entanglement was also missing in their

model. In [28] and [29] the authors present hardware architectures emulating QFT and Grover’s

search circuits. In their work, a maximum fixed-point precision of 24-bits was used to emulate up

to 5-qubit QFT and 7-qubit Grover’s search on a single FPGA. Scalability of their design is limited

and there is no proposed solution to the problem of scalability. In [30] the authors propose a high-

level synthesis (HLS) based emulation framework for QFT, but here also, the scalability of their

design is limited and the authors did not address that limitation. In a related work, ProjectQ [26]

compared simulation and emulation results trying to showcase the superiority of quantum

computer emulators in terms of performance.

23

While modular and hierarchical modeling approaches in previous works improved re-usability,

the modeling of each quantum gate as an individual component consumes greater resources,

reduces accuracy, and limits scalability. In this work, we propose and evaluate emulation models

that significantly reduce the resource utilization and emulation times, thus improving scalability

and allowing the use of floating-point precision for improved accuracy. In this work, we report the

highest number of fully entangled qubits on a single FPGA among related work. Lastly, fully

pipelined designs of the hardware architectures resulted in higher operating frequency and

throughput compared to existing emulators. The proposed emulation framework is also the first

among existing related work, to integrate C2Q and Q2C methods with emulation of quantum

algorithms.

24

Chapter 3: Classical-to-Quantum Encoding

3.1 Related Work

Existing methods of encoding classical data to a quantum representation are of three types: (a)

basis encoding, (b) angle encoding, and (c) amplitude encoding [40]. Basis encoding involves

encoding the binary representations of the data points as basis states. Typically, this technique is

costly in terms of number of qubits. The authors in [41] presented an optimized basis encoding

technique for image processing, where pixels are represented by the tensor product of their color

and position. As a result of their optimization, the qubit cost was lowered, however their technique

incurred greater circuit depth. Angle encoding represents one data point per qubit, with each data

point encoded as a normalized rotation in the Bloch sphere. The authors in [42] investigated angle

encoding and presented a quantum method for image edge detection. However, their method might

render being unrealistic because each image pixel requires one qubit for encoding. In amplitude

encoding, each data point is represented as the amplitude/coefficient of a basis state in a

superimposed quantum state. The work in [43] proposed circuits with depth complexity 𝑂𝑂(𝑛𝑛),

where n is the number of qubits. However, the number of qubits required is of the order 𝑂𝑂(𝑁𝑁),

where 𝑁𝑁 = 2𝑖𝑖 is the data size, therefore the proposed circuits are not feasible for current or near-

future quantum processors.

Among the data encoding methods, amplitude encoding can represent the largest number of

data points with the least number of qubits, but the technique requires complex quantum circuits

to implement. Over the years, a number of methodologies based on amplitude encoding have been

proposed for quantum state-preparation, also known as arbitrary state synthesis [19], [44], [45],

[46], [47]. The most efficient methods have a spatial complexity of 𝑂𝑂(2𝑖𝑖+2), where 𝑛𝑛 is the

number of qubits of the corresponding state-preparation circuit. In each work, the synthesis method

25

has been evaluated by counting the total number of quantum gates (gate count) in the synthesis

circuit. However, there has been insufficient emphasis on quantum circuit depth [48] for state

synthesis. The circuit depth is defined as the number of gates or time-steps in the longest path of a

circuit. The circuit depth is closely related to the temporal complexity [48] and can be used to

determine whether a quantum circuit can be run within the decoherence constraints of a particular

quantum system.

Song and Williams in [44] presented methodologies for synthesizing any 𝑛𝑛-qubit pure state or

mixed state. For synthesizing a pure state, their algorithm involves first applying Gram-Schmidt

procedure on a matrix that contains the input data as the leftmost column, to produce a unitary

matrix. The unitary matrix is then synthesized to a quantum circuit using a recursive algebraic

method that has a complexity of 𝑂𝑂(22𝑖𝑖) [16], where 𝑛𝑛 is the number of qubits. The authors in [46]

presented transformations for one arbitrary state |a⟩ to another |b⟩ using uniformly controlled

rotations. From their presented circuit transformation from |a⟩ to |b⟩, it can be inferred that

transformation from |a⟩ to |0⟩ (or to any basis state) would require half the reported gate count.

No analysis of circuit depth was provided in their work. To compare with our proposed circuits,

we considered their circuit transforming state |a⟩ to |0⟩ and calculated the corresponding gate

count and circuit depth to be 2(𝑖𝑖+2) − 6. The work in [19] presented a method based on

disentangling a qubit, i.e., producing a basis state |0⟩ or |1⟩ on the lowest significant qubit. The

authors state that this disentangling method, which requires 2𝑖𝑖 − 2 CNOT gates for an 𝑛𝑛-qubit

circuit, can be used recursively to transform any state to a desired basis state. They reported that

the resulting final transformation circuit uses 2𝑖𝑖+1 − 2𝑛𝑛 CNOT gates, however, no detailed

analysis was provided. Furthermore, only the CNOT gate count was provided, while their proposed

circuit also requires single-qubit rotation gates that would double the total gate count to 2𝑖𝑖+2 −

26

2𝑛𝑛. In [47] the proposed methodology is based on applying 𝑛𝑛 − 1 rotation steps with permutations

on the amplitudes in-between each rotation where additional gates are required in the intermediate

permutations. The total gate count reported is 2𝑖𝑖+2 + 4𝑛𝑛 − 9 with no circuit representation of their

methodology. To be consistent with our analyses, we calculated their circuit depth to be 2𝑖𝑖+2 +

3𝑛𝑛 − 8.

In this work, we have defined the process of encoding classical data onto the quantum domain

as classical-to-quantum (C2Q) data encoding. We propose two C2Q methods based on amplitude

encoding and the corresponding state-preparation/state-synthesis circuits that results in a lower

circuit complexities than existing methods. We present the analytic expression for circuit gate

depths that were not considered in prior work. We also present the full and optimized quantum

circuits corresponding to our methods, and experimentally evaluate our circuits using simulation,

emulation on FPGA, and hardware implementation on a real quantum device from IBM Quantum

(IBM Q) [14]. In addition, the state fidelity of the proposed circuits is reported for the simulations

on the quantum device.

3.2 Proposed Methods

We propose two methods and corresponding quantum circuits for C2Q data encoding. Given

a classical dataset of 𝑁𝑁 = 2𝑖𝑖 elements, where n is the number of required qubits to represent the

classical dataset, we propose a quantum circuit denoted as 𝑈𝑈𝐶𝐶2𝑄𝑄−1 that synthesizes a corresponding

quantum state with encoded classical data. 𝑈𝑈𝐶𝐶2𝑄𝑄−1 is parameterized by the global scale r, global

phase t, azimuth angle 𝜑𝜑, and elevation angle 𝜃𝜃. We also present an optimized state synthesis

circuit 𝑈𝑈𝐶𝐶2𝑄𝑄−2 that is characterized by unity global scale, i.e., 𝑟𝑟 = 1. The steps of the proposed

methodology in the formation of the circuits 𝑈𝑈𝐶𝐶2𝑄𝑄−1 and 𝑈𝑈𝐶𝐶2𝑄𝑄−2 are elaborated in the next

subsections.

27

3.2.1 Method 1: State Synthesis with Global Scale and Phase

A quantum register of 𝑛𝑛 qubits that is in ground state is defined as |𝜓𝜓0⟩=|0⟩⨂𝑖𝑖. Given a

classical data set of 𝑁𝑁 = 2𝑖𝑖 elements, the objective is to synthesize a target input quantum state

given by |𝜓𝜓⟩ = ∑ 𝛼𝛼𝑖𝑖|𝑖𝑖⟩𝑁𝑁−1
𝑖𝑖=0 . Every 𝑖𝑖𝑜𝑜ℎ element from the classical data set will be encoded as a basis

state coefficient 𝛼𝛼𝑖𝑖 in the quantum state |𝜓𝜓⟩. For state-preparation or state-synthesis, it is required

to find a quantum circuit, 𝑈𝑈𝐶𝐶2𝑄𝑄−1, that transforms the ground state |𝜓𝜓0⟩ to the target state |𝜓𝜓⟩, i.e.,

|𝜓𝜓⟩ = 𝑈𝑈𝐶𝐶2𝑄𝑄−1 ∙ |𝜓𝜓0⟩.

Any arbitrary single-qubit gate can be decomposed as a series of 𝑅𝑅𝑧𝑧 and 𝑅𝑅𝑦𝑦 gates known as

the ZYZ or Pauli decomposition [16] [19]. Therefore, a qubit in ground state |0⟩ can be

transformed to any arbitrary state |𝜓𝜓⟩ by applying a rotation of angle 𝜃𝜃 about 𝑦𝑦-axis, followed by

a rotation of angle 𝜙𝜙 about the 𝑧𝑧-axis, followed by a global scale and phase shift, see Fig. 6 and

(11):

|𝜓𝜓⟩ = 𝑅𝑅𝑧𝑧(𝜙𝜙) ∙ 𝑅𝑅𝑦𝑦(𝜃𝜃) ∙ 𝑟𝑟𝑒𝑒𝑖𝑖
𝑜𝑜
2 ∙ |0⟩ (11)

where 𝑟𝑟𝑒𝑒𝑖𝑖
𝑡𝑡
2 is an unobservable global quantity [16] for the single qubit, 𝑟𝑟 is the global scale

parameter [16], and 𝑞𝑞 is the unobservable global phase shift [16]. If the coefficients of the target

state |𝜓𝜓⟩ are 𝛼𝛼 and 𝛽𝛽, such that |𝜓𝜓⟩ = �
𝛼𝛼
𝛽𝛽� and |0⟩ = �10�, then the parameters 𝑟𝑟, 𝑞𝑞, 𝜃𝜃, and 𝜙𝜙 for the

transformation given in (11) could be determined by substituting the transformation matrices of

𝑅𝑅𝑧𝑧 and 𝑅𝑅𝑦𝑦, see Fig. 3 , in (11), and are given by:

𝑟𝑟 = �𝛼𝛼2 + 𝛽𝛽2, 𝑞𝑞 = ∠𝛽𝛽 + ∠𝛼𝛼

𝜃𝜃 = 2 tan−1 �
|𝛽𝛽|
|𝛼𝛼|� , 𝜙𝜙 = ∠𝛽𝛽 − ∠𝛼𝛼

(12)

where,

28

|𝛼𝛼| = �Re2(𝛼𝛼) + Im2(𝛼𝛼), ∠𝛼𝛼 = tan−1 �
Im(𝛼𝛼)
Re(𝛼𝛼)�,

|𝛽𝛽| = �Re2(𝛽𝛽) + Im2(𝛽𝛽), ∠𝛽𝛽 = tan−1 �
Im(𝛽𝛽)
Re(𝛽𝛽)�

Using the Pauli decomposition described by (11) and the parameters obtained by (12), we

derive a method for transforming any 𝑛𝑛-qubit register in the ground state |𝜓𝜓0⟩ = |0⟩⊗𝑖𝑖 to an

arbitrary state |𝜓𝜓⟩, see Fig. 7. To synthesize the 𝑗𝑗𝑜𝑜ℎ pair of coefficients, or �𝜓𝜓𝑗𝑗� in the state vector

of |𝜓𝜓⟩, 𝑈𝑈𝑗𝑗 is applied on a ground state |𝜓𝜓0⟩, where 𝑗𝑗 = 0,1,2, … , (2𝑖𝑖−1 − 1). However, 𝑈𝑈𝑗𝑗 cannot

be applied to a single qubit in the 𝑛𝑛-qubit register to synthesize the corresponding pair of

coefficients without also affecting the other coefficients in |𝜓𝜓⟩. Hence, each transformation 𝑈𝑈𝑗𝑗

needs to be applied conditionally to synthesize the 𝑗𝑗𝑜𝑜ℎ pair of coefficients in the output state. The

resulting conditional quantum circuit can be represented by a block-diagonal matrix 𝑈𝑈𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘, of

which each diagonal block is a 2 × 2 transformation matrix 𝑈𝑈𝑗𝑗, see Fig. 6 and (13). The elements

of 𝑈𝑈𝑗𝑗 are calculated using the parameters 𝑟𝑟𝑗𝑗 , 𝑞𝑞𝑗𝑗 ,𝜃𝜃𝑗𝑗 , and 𝜙𝜙𝑗𝑗 obtained from the 𝑗𝑗𝑜𝑜ℎ pair of coefficients

using (12).

Fig. 6: Pauli decomposition for single-qubit state synthesis.

𝑈𝑈𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 = 𝑈𝑈0 ⊕ 𝑈𝑈1 ⊕ …𝑈𝑈𝑗𝑗 …⊕𝑈𝑈�2𝑛𝑛−1−1�

= 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 �𝑈𝑈0,𝑈𝑈1, …𝑈𝑈𝑗𝑗 , … ,𝑈𝑈�2𝑛𝑛−1−1��
(13)

A block-diagonal matrix such as 𝑈𝑈𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 can be implemented as a quantum multiplexer [44]

[19] with 𝑛𝑛 qubits of which (𝑛𝑛 − 1) are control qubits acting on the least significant target qubit.

29

The corresponding circuit is shown in Fig. 7. For each combination of the control qubits, the

corresponding 𝑈𝑈𝑗𝑗 transformation is applied on the target qubit 𝑞𝑞0, where 𝑗𝑗 = 0,1,2, … , (2𝑖𝑖−1 − 1).

To produce all combinations on the control qubits with equal probability, a set of 𝐻𝐻 gates must be

applied on the (𝑛𝑛 − 1) control qubits before applying the 𝑈𝑈 transformation. The desired final state

|𝜓𝜓⟩ is produced at the output with the target coefficients as a result of uniformly applying each 𝑈𝑈𝑗𝑗

transformation on the least significant qubit. The overall transformation, 𝑈𝑈𝐶𝐶2𝑄𝑄−1, from ground

state |𝜓𝜓0⟩ = |0⟩⊗𝑖𝑖 to |𝜓𝜓⟩ can be expressed by (14).

Fig. 7: Conditional logic-based quantum circuit for arbitrary state synthesis. The white and black

circles on the control qubits represent bit values of zero and one respectively.

|𝜓𝜓⟩ = 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 ⋅ |𝜓𝜓0⟩ = 𝑈𝑈𝐶𝐶2𝑄𝑄−1 ∙ |0⟩⊗𝑖𝑖, where

𝑈𝑈𝐶𝐶2𝑄𝑄−1 = �√2�
𝑖𝑖−1

∙ 𝑈𝑈𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 ∙ �𝐻𝐻⨂(𝑖𝑖−1)⨂𝐼𝐼�, and

𝐼𝐼 is a 2 × 2 identity matrix

(14)

Each 𝑈𝑈𝑗𝑗 block is a sequence of a phase and scale shift, followed by 𝑦𝑦-rotation, followed by 𝑧𝑧-

rotation as shown in Fig. 8, and 𝑈𝑈𝑗𝑗 is calculated from the corresponding set of parameters

�𝑟𝑟𝑗𝑗 , 𝑞𝑞𝑗𝑗 ,𝜃𝜃𝑗𝑗 ,𝜙𝜙𝑗𝑗� obtained by (12). Since each set of operations are mutually exclusive from each other,

we can separate them into uniformly controlled groups of phase and scale shifts, 𝑦𝑦-rotations, and

𝑧𝑧-rotations as shown in Fig. 9.

30

Fig. 8: Factorization of the Uj transformation.

Fig. 9: Expanded full quantum circuit for arbitrary state synthesis.

To represent uniformly controlled operations as a single gate operation, we use a notation

previously used in [19], where the sequence of different combinations on the control qubits are

replaced with a `square box’ notation indicating multi-control, and the parameterized operations

for each combination are replaced by a single box denoting the general operation. We use this

notation to simplify the circuit in Fig. 9 and the resulting circuit representation is shown in Fig.

10.

The uniformly controlled 𝑅𝑅𝑦𝑦 and 𝑅𝑅𝑧𝑧 rotation operations in Fig. 10 can be decomposed into a

sequence of primitive CNOT and one-qubit rotation gates. A systemic decomposition method was

presented in [45] which we leverage for our methodology. The method involves taking the binary

reflected gray code of the control bit sequence to determine the control qubit positions of the

31

CNOT gates. As a demonstrative example, the decomposition for a 3-qubit controlled 𝑅𝑅𝑦𝑦 operation

with rotation angles 𝜃𝜃𝑗𝑗 is shown in Fig. 11. To calculate the new set of rotation angles 𝜃𝜃𝚥𝚥� for the

one-qubit rotations in Fig. 11, a transformation matrix 𝑀𝑀𝑖𝑖𝑗𝑗
𝑘𝑘 = (−1)𝑏𝑏𝜋𝜋−1∙𝑔𝑔𝑗𝑗−1 was formulated in [49].

The exponent of this matrix is the bit-wise inner product of the binary vectors for standard binary

representation, 𝑏𝑏𝑖𝑖−1, and gray code representation 𝑑𝑑𝑗𝑗−1. Applying the inverse of 𝑀𝑀𝑖𝑖𝑗𝑗
𝑘𝑘 on the vector

of angles 𝜃𝜃𝑗𝑗 consequently produces a vector of angles 𝜃𝜃𝚥𝚥� . The decomposition for one uniformly

controlled rotation operations takes 2𝑖𝑖 gates (2𝑖𝑖−1 CNOTs and 2𝑖𝑖−1 one-qubit rotations) in total

[19] [47] [49]. We apply this decomposition for the uniformly controlled 𝑅𝑅𝑦𝑦 and 𝑅𝑅𝑧𝑧 rotation

operations in Fig. 10.

Fig. 10: Simplified full quantum circuit for arbitrary state synthesis.

Fig. 11: Decomposition of a uniformly controlled 3-qubit Ry rotation operation.

32

3.2.2 Method 2: State Synthesis with Unity Global Scale

The proposed C2Q circuit in Fig. 10 considers the global scale and phase shift parameters,

which are unobservable in actual quantum systems. We propose a more practical approach for

synthesizing a quantum state in which the global scale is unity, i.e., 𝑟𝑟 = 1. The corresponding

optimized state-preparation circuit 𝑈𝑈𝐶𝐶2𝑄𝑄−2 that is characterized by unity global scale is also

presented.

Given 𝑁𝑁 = 2𝑖𝑖 data points, we want to synthesize a target n-qubit quantum state |𝜓𝜓⟩ with N

coefficients, 𝐶𝐶0,𝐶𝐶1, … ,𝐶𝐶𝑁𝑁−1, such that the coefficients are equal to the data points. From the given

coefficients, we calculate an array of intermediate probabilities 𝑃𝑃𝑖𝑖,𝑗𝑗 as shown in (15), for 0 < 𝑗𝑗 <

𝑛𝑛 − 1 and 0 < 𝑖𝑖 < 𝑘𝑘𝑗𝑗 − 1, where 𝑘𝑘𝑗𝑗 = 2𝑖𝑖−1−𝑗𝑗.

𝑃𝑃𝑖𝑖,𝑗𝑗 = �
|𝐶𝐶2𝑖𝑖|2 + |𝐶𝐶2𝑖𝑖+1|2 𝑗𝑗 = 0, 0 ≤ 𝑖𝑖 < 2𝑖𝑖−1
𝑃𝑃2𝑖𝑖,𝑗𝑗−1 + 𝑃𝑃2𝑖𝑖+1,𝑗𝑗−1 1 ≤ 𝑗𝑗 < 𝑛𝑛, 0 ≤ 𝑖𝑖 < 2𝑖𝑖−1−𝑗𝑗

0, 2𝑖𝑖−1−𝑗𝑗 ≤ 𝑖𝑖 < 2𝑖𝑖−1
 (15)

Using the 𝑃𝑃𝑖𝑖,𝑗𝑗 probabilities, we calculate the coefficient pairs 𝛼𝛼𝑖𝑖,𝑗𝑗 and 𝛽𝛽𝑖𝑖,𝑗𝑗, as shown in (16)

and (17).

𝛼𝛼𝑖𝑖,𝑗𝑗 =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐶𝐶2𝑖𝑖
�𝑃𝑃𝑖𝑖,𝑗𝑗

 𝑃𝑃𝑖𝑖,𝑗𝑗 ≠ 0, 𝑗𝑗 = 0, 0 ≤ 𝑖𝑖 < 2𝑖𝑖−1

�
𝑃𝑃2𝑖𝑖,𝑗𝑗−1
𝑃𝑃1,𝑗𝑗

 𝑃𝑃𝑖𝑖,𝑗𝑗 ≠ 0, 1 ≤ 𝑗𝑗 < 𝑛𝑛, 0 ≤ 𝑖𝑖 < 2𝑖𝑖−1−𝑗𝑗

1, 𝑃𝑃𝑖𝑖,𝑗𝑗 = 0

 (16)

𝛽𝛽𝑖𝑖,𝑗𝑗 =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐶𝐶2𝑖𝑖
�𝑃𝑃𝑖𝑖,𝑗𝑗

 𝑃𝑃𝑖𝑖,𝑗𝑗 ≠ 0, 𝑗𝑗 = 0, 0 ≤ 𝑖𝑖 < 2𝑖𝑖−1

�
𝑃𝑃2𝑖𝑖+1,𝑗𝑗−1

𝑃𝑃1,𝑗𝑗
 𝑃𝑃𝑖𝑖,𝑗𝑗 ≠ 0, 1 ≤ 𝑗𝑗 < 𝑛𝑛, 0 ≤ 𝑖𝑖 < 2𝑖𝑖−1−𝑗𝑗

0, 𝑃𝑃𝑖𝑖,𝑗𝑗 = 0

 (17)

33

From the new coefficient pairs 𝛼𝛼𝑖𝑖,𝑗𝑗 and 𝛽𝛽𝑖𝑖,𝑗𝑗, we calculate the parameters 𝜃𝜃𝑖𝑖,𝑗𝑗, 𝜑𝜑𝑖𝑖,𝑗𝑗, 𝑞𝑞𝑖𝑖,𝑗𝑗, and 𝑟𝑟𝑖𝑖,𝑗𝑗,

as shown in (18), required for transforming each qubit and synthesizing the target quantum state.

This methodology results in values of 𝑟𝑟𝑖𝑖,𝑗𝑗 being unity.

𝑟𝑟𝑖𝑖,𝑗𝑗 = ��𝛼𝛼𝑖𝑖,𝑗𝑗�
2 + �𝛽𝛽𝑖𝑖,𝑗𝑗�

2, 𝑞𝑞𝑖𝑖.𝑗𝑗 = ∠𝛽𝛽𝑖𝑖,𝑗𝑗 + ∠𝛼𝛼𝑖𝑖,𝑗𝑗

𝜃𝜃𝑖𝑖,𝑗𝑗 = 2 tan−1 �
�𝛽𝛽𝑖𝑖,𝑗𝑗�
�𝛼𝛼𝑖𝑖,𝑗𝑗�

� , 𝜙𝜙𝑖𝑖,𝑗𝑗 = ∠𝛽𝛽𝑖𝑖,𝑗𝑗 − ∠𝛼𝛼𝑖𝑖,𝑗𝑗

(18)

where,

�𝛼𝛼𝑖𝑖,𝑗𝑗� = �Re2�𝛼𝛼𝑖𝑖,𝑗𝑗� + Im2�𝛼𝛼𝑖𝑖,𝑗𝑗�, ∠𝛼𝛼𝑖𝑖,𝑗𝑗 = tan−1 �
Im�𝛼𝛼𝑖𝑖,𝑗𝑗�
Re�𝛼𝛼𝑖𝑖,𝑗𝑗�

�,

�𝛽𝛽𝑖𝑖,𝑗𝑗� = �Re2�𝛽𝛽𝑖𝑖,𝑗𝑗� + Im2�𝛽𝛽𝑖𝑖,𝑗𝑗�, ∠𝛽𝛽𝑖𝑖,𝑗𝑗 = tan−1 �
Im�𝛽𝛽𝑖𝑖,𝑗𝑗�
Re�𝛽𝛽𝑖𝑖,𝑗𝑗�

�

and,

𝑗𝑗 = 0, 1, … , (𝑛𝑛 − 1),

𝑖𝑖 = 0, 1, … , �𝑘𝑘𝑗𝑗 − 1�,

𝑘𝑘𝑗𝑗 = 2𝑖𝑖−1−𝑗𝑗

The corresponding quantum circuit 𝑈𝑈𝐶𝐶2𝑄𝑄−2 consists of a series of operations 𝑈𝑈𝑗𝑗 where 𝑗𝑗 =

0, 1, … , (𝑛𝑛 − 1), see Fig. 12. A set of 𝑅𝑅𝑦𝑦(𝜃𝜃𝑗𝑗) rotations is applied in the first (𝑛𝑛 − 1) operations 𝑈𝑈𝑗𝑗,

where 𝑗𝑗 = (𝑛𝑛 − 1), (𝑛𝑛 − 2), … , 2, 1, followed by a set of 𝑅𝑅𝑦𝑦(𝜃𝜃0) and 𝑅𝑅𝑧𝑧(𝜑𝜑0) rotations, and global

phase shift 𝑞𝑞 in 𝑈𝑈0, see Fig. 12(a). Each 𝑈𝑈𝑗𝑗 is a uniformly-controlled operation, shown in Fig. 12(b).

As shown in Fig. 12(c), a number (𝑘𝑘𝑗𝑗 = 2𝑖𝑖−1−𝑗𝑗) of 𝑈𝑈𝑖𝑖,𝑗𝑗 rotation operations are applied for each

𝑈𝑈𝑗𝑗, where 𝑖𝑖 = 0, 1, … , �𝑘𝑘𝑗𝑗 − 1�, and 0 ≤ 𝑗𝑗 < 𝑛𝑛. Each 𝑈𝑈𝑖𝑖,𝑗𝑗 is a Pauli decomposition [16] operation

requiring a 4-tuple of parameters (𝜃𝜃,𝜑𝜑, 𝑟𝑟, 𝑞𝑞) which are calculated from given classical data set |𝜓𝜓⟩

using the steps described previously in (15) to (18).

34

(a) Quantum circuit for C2Q data encoding with unity global scale.

(b) Uniformly-controlled operations.

(c) Pauli decomposition for single-qubit state synthesis.

Fig. 12: Quantum circuits for C2Q data encoding with unity global scale.

3.2.3 Analysis of Circuit Depth for Proposed Methods

To determine the circuit depths for the proposed C2Q circuits, we present two types of depth

analysis: (a) considering uniformly-controlled gates, and (b) considering primitive 2-qubit CNOT

35

and 1-qubit rotation gates. For each type of analysis, we also consider two types of input data: (a)

complex data, and (b) positive real data. The derived circuit depths for the proposed C2Q methods

are summarized in Table 1.

Table 1: Analysis of circuit depths for proposed C2Q methods.

For method 1, the proposed 𝑈𝑈𝐶𝐶2𝑄𝑄−1 circuit in Fig. 10 consists of four uniformly-controlled

operations. Each operation has 𝑛𝑛 − 1 controls, therefore, there are 2𝑖𝑖−1 combinations in each

uniformly-controlled operation and depth of each is 2𝑖𝑖−1. The total depth for complex data is

4 × 2𝑖𝑖−1 + 1 = 2𝑖𝑖+1 + 1 with the additional level for the 𝐻𝐻 gates, as shown in Table 1. For

positive real data, the uniformly-controlled global phase and 𝑅𝑅𝑍𝑍 operations are not required, i.e.,

𝑅𝑅𝑍𝑍 becomes identity matrix, and therefore the total depth is reduced to 2 × 2𝑖𝑖−1 + 1 = 2𝑖𝑖 + 1. If

we consider decomposing the circuits into primitive 2-qubit CNOT and 1-qubit rotation gates, then

each uniformly-controlled 𝑅𝑅𝑦𝑦 or 𝑅𝑅𝑧𝑧 operation can be decomposed into 2𝑖𝑖 CNOTs and rotations.

For this analysis, we denote the depth of the uniformly-controlled global scale and phase

operations as 𝜒𝜒𝐻𝐻 and 𝜒𝜒𝑜𝑜. Therefore, for the 𝑈𝑈𝐶𝐶2𝑄𝑄−1 circuit in Fig. 10, the total depth for complex

data is 2 × 2𝑖𝑖 + 𝜒𝜒𝐻𝐻 + 𝜒𝜒𝑜𝑜 + 1, see Table 1. For positive real data, the total depth is reduced to 2𝑖𝑖 +

𝜒𝜒𝐻𝐻 + 1, see Table 1.

36

For method 2, the proposed 𝑈𝑈𝐶𝐶2𝑄𝑄−2 circuit in Fig. 12 consists of 𝑛𝑛 × 𝑈𝑈𝑗𝑗 operations each having

(𝑛𝑛 − 𝑗𝑗 − 1) control qubits. The final block 𝑈𝑈0 contains three uniformly-controlled operations, each

of depth 2𝑖𝑖−1. The total depth can be derived as 1 + 21 + 22 + ⋯+ 2𝑖𝑖−1 + 2 × 2𝑖𝑖−1 = 2𝑖𝑖+1 −

1. For positive real data, the reduced depth is 2𝑖𝑖 − 1. For analysis with primitive gates, we denote

the depth of uniformly-controlled global scale and phase operations as 𝜒𝜒𝐻𝐻 and 𝜒𝜒𝑜𝑜 as before. The

decomposition of each 𝑈𝑈𝑗𝑗 into primitive gates is 2𝑖𝑖−𝑗𝑗. Therefore, the total depth is derived as 1 +

21 + 22 + ⋯+ 2𝑖𝑖−1 + (2𝑖𝑖 + 2𝑖𝑖 − 2 + 𝜒𝜒𝑜𝑜) = 2𝑖𝑖+1 + 2𝑖𝑖 + 𝜒𝜒𝑜𝑜 − 3, see Table 1. For positive real

data, the reduced depth is 2𝑖𝑖+1 − 3, see Table 1.

We analyzed the complexities of the methods presented in prior works related to arbitrary state

synthesis. A quantitative comparison of those methods with our proposed C2Q methods, in terms

of the theoretical circuit depth, is shown in Table 2. In general, the previous methods proposed

using uniformly controlled rotation operations to recursively disentangle each qubit, which results

in larger gate count and depth. Our proposed methods result in reduction of circuit depth by at least

a factor of two, see Table 2.

Table 2: Comparison of C2Q methods in terms of circuit depth.

Method Circuit Depth

Mottonen [46], 2004 2𝑖𝑖+2 − 6

Shende [19], 2006 2𝑖𝑖+2 + 2𝑛𝑛

Niemann [47], 2016 2𝑖𝑖+2 + 3𝑛𝑛 − 8

Proposed C2Q Method 1 2𝑖𝑖+1 + 1

Proposed C2Q Method 2 2𝑖𝑖+1 − 1

37

3.3 Hardware Architectures for Emulating Classical-to-Quantum Encoding

(a) System architecture for emulation of quantum algorithms integrated with C2Q.

(b) Kernel architecture for C2Q-1

Fig. 13: Hardware architectures for emulating C2Q data encoding.

To evaluate the proposed C2Q methods and corresponding circuits, a hardware-based

emulation model is proposed, and the hardware system architecture is shown in Fig. 13(a). The

emulation model consists of two components: modeling C2Q data encoding, and modeling a

quantum algorithm. These components are modeled in the architecture as reconfigurable hardware

kernels, kernel_c2q and kernel_qa respectively, see Fig. 13. The sets of input parameters,

𝜃𝜃𝑗𝑗 ,𝜙𝜙𝑗𝑗 , 𝑟𝑟𝑗𝑗 , 𝑞𝑞𝑗𝑗 where 𝑗𝑗 = 0, 1, 2, … , 𝑁𝑁
2
− 1, and input/output state vectors |𝜓𝜓𝑖𝑖𝑖𝑖⟩, |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ are stored in

the on-board memory and transferred to the kernel reconfigurable regions during computation. 32-

bit floating point precision is used for storage and computation. The host machine controls memory

38

transfers and kernel execution commands. In this emulation model, the kernel_c2q is executed

first, which operates on the input parameters and synthesizes the input quantum state |𝜓𝜓𝑖𝑖𝑖𝑖⟩. The

parameter extraction from given data set is done by the host machine. The input quantum state

vector is then transferred to the kernel_qa which performs the operations of the quantum algorithm

and produces an output state vector |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ that is stored in the on-board memory. The hardware

architecture of kernel_c2q is presented in Fig. 13(b) which emulates the operation of the proposed

method 1 for C2Q, see Fig. 10. This architecture synthesizes the 𝑗𝑗𝑜𝑜ℎ pair of complex coefficients

from input parameters 𝜃𝜃𝑗𝑗 ,𝜙𝜙𝑗𝑗 , 𝑟𝑟𝑗𝑗 , 𝑞𝑞𝑗𝑗.

The proposed hardware architecture focuses on ease-of-use and maximizing scalability of the

emulation. As state vectors are stored in the on-board memory, it allows emulation of larger

quantum circuits and algorithms. On the other hand, I/O between the FPGA and memory can cause

degradation of emulation speed. Faster emulation can be traded off for less memory space by

storing the state vectors in the FPGA on-chip memories and directly buffering the vectors between

the kernels. The latter method, however, results in a larger and more complex architecture that

requires strict synchronization between hardware kernels.

39

Chapter 4: Quantum Algorithm Emulation

To emulate behavior of quantum algorithms, we investigated and developed different

emulation models and techniques. We analyze the area and speed trade-offs for each model and

discuss the advantages and disadvantages of the underlying techniques used.

4.1 Gate-based Emulation Model

Our primary objective was to develop a gate-based, modular framework which can be easily

re-used for emulating large-scale quantum algorithms. The framework consists of a library of

components of single qubit gates, e.g., Hadamard, Pauli X, Pauli Z, etc. [11], and multi qubit gates,

e.g., CNOT, SWAP, Controlled Phase Gate, etc. [11]. In modeling qubits, we used the data

structure shown in Fig. 14, where 𝛼𝛼 and 𝛽𝛽 are complex coefficients. To build an accurate emulator

that matches the precision of software simulators, we use 32-bit floating-point numbers in our

calculations to represent the real and imaginary components of each complex coefficient.

𝛼𝛼𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(32-bit) 𝛼𝛼𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(32-bit) 𝛽𝛽𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(32-bit) 𝛽𝛽𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(32-bit)

Fig. 14: Data structure for storing information for a single qubit.

4.1.1 Modeling Quantum Gates

To demonstrate our modeling approach, we take the H gate as an example. The matrix

representation of the H gate is given in Fig. 3 and the vector representation of a qubit is given in

(2). The operation of the H gate on a qubit can be defined by matrix multiplication as described in

(19).

The H gate component is provided two 128-bit data bus for input and output respectively, as shown

in Fig. 15(a). The dataflow operations for the H gate is shown in Fig. 15(b). The component

performs unpacking operations to extract the real and imaginary parts of the coefficients from the

1
√2

�1 1
1 −1� . �

 𝛼𝛼
𝛽𝛽 � =

1
√2

�𝛼𝛼 + 𝛽𝛽
𝛼𝛼 − 𝛽𝛽� (19)

40

data bus. It then performs the necessary math operations on the real and imaginary components, in

this case, four additions and four multiplications. It finally performs packing operations to prepare

the output data in the same format and sends it out via the output bus. This structure has been used

as a template for creating components for other quantum gates.

(a) H gate component (b) Dataflow model for H gate

Fig. 15: Emulating Hadamard (H) gate.

4.1.2 Modeling Tensor Operations

To model quantum operations, we also need components representing tensor operations. For

example, for the tensor operation shown in Fig. 16(a) for 3 qubits, the corresponding hardware

design is shown in Fig. 16(b). The 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐻𝐻 operation, defined by an 8 × 8 matrix, is a

transformation on the coefficients, which are represented as a state vector, of any quantum state.

Hence the component for this operation will take 8 complex coefficients as input and produce 8

complex output coefficients. To accommodate this many coefficients, four 128-bit data buses are

used as inputs and outputs. Accordingly, from the transformation matrix, see Fig. 16(a), the

dataflow model is derived as shown in Fig. 16(c).

41

𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐻𝐻 =

1
√2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

(a) Transformation on entangled
qubits represented as a tensor
product.

(b) Component for tensor
operation I ⊗ I ⊗ H

(c) Dataflow model for I ⊗ I ⊗ H
operation

Fig. 16: Emulating tensor operations.

4.1.3 Modeling Quantum Circuits

The size of the equivalent hardware model of a quantum circuit will grow exponentially with

the increase in the number of qubits [29]. Hence, we can only emulate a limited number of qubits

using a single FPGA. In our work, we have used full 32-bit floating-point precision which

increases the resource consumption on the FPGA compared to previous fixed-point

implementations [27] [39] [28], [29] [30]. If there is no scope of further design optimization, then

to improve scalability of the design, the resources can be distributed among multiple FPGA nodes.

The design model is partitioned, and data can be passed between partitioned systems or nodes via

a low-latency and high-bandwidth network, as shown in Fig. 17. A number of reconfigurable nodes

42

can be stacked according to the requirements and size of the model. We discuss modeling of a 5-

qubit QFT circuit in order to demonstrate this approach.

𝑇𝑇1 = 𝐻𝐻 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼
 𝑇𝑇2 = 𝐶𝐶𝑅𝑅2 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼

 𝑇𝑇3 = (𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼). (𝐶𝐶𝑅𝑅3 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼).
(𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼)

 𝑇𝑇4 = (𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼). (𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼).
(𝐶𝐶𝑅𝑅4 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼). (𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼).

 (𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼)
𝑇𝑇5 = (𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆). (𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼).

(𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼). (𝐶𝐶𝑅𝑅5 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼).
(𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼). (𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆)

Fig. 17: Hardware architecture for design
space sharing.

Fig. 18: Modeling a 5-qubit Quantum Fourier
Transform circuit using tensor operations.

Fig. 18 shows the quantum circuit for 5-qubit QFT. Derivation of the QFT circuit can be found

among previous works [28] [29] [30]. The circuit consists of Hadamard gates (H), Controlled-

Phase shift gates (CR2, CR3, CR4, and CR5) and SWAP gates (SW) [24]. The H gate puts the qubit

in a superposition state. The CR2, CR3, CR4, and CR5 gates shift the phase of the qubit by 𝜋𝜋
2

, 𝜋𝜋
4

, 𝜋𝜋
8
,

and 𝜋𝜋
16

 respectively, depending on the control qubit. The SW gate simply swaps the coefficients of

two qubits. According to the gate-based quantum computing approach, the circuit can be modeled

as a series of transformations. The first five transformations are shown in Fig. 18. It should be

noted that for T3, T4, and T5, additional SW gate operations are required to enable controlled-

phase shift operations on adjacent qubits [28]. To model this circuit for hardware, the tensor

components designed in our library are used to build a dataflow model representing the series of

43

transformations. Once a complete dataflow model consisting of multi components is developed, it

can be conveniently split into necessary number of partitions for implementation on the multi-node

architecture in Fig. 17. Fig. 19 shows the dataflow model for 5-qubit QFT split into three partitions

for a tentative three-node architecture.

Fig. 19: Space-shared (partitioned) hardware models for 5-qubit QFT circuit.

For the case of quantum circuits such as QFT, there is limited scope of design optimization

and resource sharing as each part of the circuit has a different set of operations relative to each

other. In other words, QFT is not inherently regular or uniform in terms of hardware structures

among temporal evaluation iterations. Therefore, it is not possible to exploit or apply temporal

resource sharing for QFT. However, for the case of Grover’s search algorithm, the algorithm

consists of multiple iterations of the same set of circuit operations. Hence, it is possible and

essential to make use of both space and time-sharing techniques in order to minimize resource

utilization for the design of larger-scale hardware models of Grover’s algorithm while also

44

maximizing its throughput. In general, we design a hardware architecture for modeling quantum

circuits that require temporal iterations of one or more functions. This is illustrated in Fig. 20 for

a generic algorithm that consists of more than one function or stage.

Fig. 20: Hardware architecture for space-time sharing.

To elaborate the working concept of the architecture we take the example of Grover’s search

algorithm. As discussed in Chapter II, Grover’s search algorithm consists of two prime stages

which are repeated for √𝑁𝑁 iterations to reach the solution. The stages phase inversion and inversion

about mean are mapped to function_A and function_B respectively, see Fig. 5 and Fig. 20. The

input data to the circuit is selected by a multiplexer between source_1, which is the external input,

and source_2, which is the feedback from the output of a previous iteration of evaluation. The

select signal to the multiplexer comes from a comparator that compares an iteration variable 𝑖𝑖 (that

is incremented every clock cycle) to 0 or 1. This is done to ensure that function_A will accept input

from source_1 during the first two clock cycles of every iteration cycle, while for other values of

𝑖𝑖, the input will come from source_2. This technique of non-linear pipelining ensures that at each

clock cycle both stages are doing useful work, thus maximizing throughput and pipeline efficiency

[50]. This is illustrated by the function reservation table [50] shown in Table 3. As shown in Table

3, in the first clock cycle, Cycle1, function_A takes data D1* from source_1 while function_B is

45

idle. In the next cycle Cycle2, function_B processes D1 from function_A, while function_A accepts

a new set of data, D2*. From each cycle onwards, the two stages continue to work these sets of

data until the number of iterations required by the algorithm is completed. Here it is assumed that

each iteration is equivalent to two clock cycles for each stage.

Table 3: Reservation Table of Non-Linear Pipelined Architecture
 Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7

function_A D1* D2* D1 D2 D1 D2 D3*

function_B D1 D2 D1 D2 D1 D2

 iteration 0 (D1) iteration 1 (D1) iteration 2 (D1) …

In modeling the stages of Grover’s circuit, we propose using a hybrid approach. We model the

oracle function using pure quantum gates, while the Grover diffusion function is modeled using

arithmetic functions. This hybrid approach ensures true quantum behavior is emulated in the oracle

search function while significant computational resources are saved in using the arithmetic model

for the diffusion function. Fig. 21(a) shows a quantum gate-based oracle circuit for detecting the

binary string “11111”. We develop the equivalent hardware model using components as shown in

Fig. 21(b). The quantum gates used in this model are H gates and a quadruple controlled NOT

(CCCCNOT) gate derived from a triply controlled Not (CCCNOT) gate [51]. We choose the gate

or component-based design approach for the oracle function so that it can be conveniently modified

for detecting different patterns for other functions. Fig. 21(c) shows the data flow model of the

inversion about mean stage, otherwise known as the Grover diffusion function. The design is

parameterized by the number of qubits n. 𝛼𝛼1to 𝛼𝛼𝑁𝑁 are the complex coefficients of the qubits of the

system, where N = 2n. The model operation consists of summing the complex coefficients and right-

shifting the sum by n-1 bits to obtain 2𝜇𝜇, where 𝜇𝜇 is the mean. The final part of the transformation

46

is 2𝜇𝜇 − 𝛼𝛼𝑖𝑖, see Fig. 4. The design depth is determined by N while the design width remains

unchanged for any number of qubits.

(a) Oracle circuit for detecting “11111”.

(b) Component-level view of oracle hardware model

(c) Data flow for implementing Grover diffusion function.

Fig. 21: Hardware models for 5-qubit Grover’s search algorithm.

4.2 CMAC-based Emulation Model

The gate-based emulation model results in low scalability, as the hardware resource utilization

increases exponentially with circuit size, i.e., number of qubits and number of stages (cascaded

gates). We investigated and developed a more scalable, generalized emulation model that is

optimized in terms of resource utilization and emulation time. A quantum algorithm is a series of

transformations on the entangled quantum state of the qubits. The series of transformations can be

represented as a single unitary complex-valued matrix, 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴 [16]. An input quantum state, |𝜓𝜓𝑖𝑖𝑖𝑖⟩,

47

can be represented by a state vector comprising of the complex coefficients of the basis states of

the quantum state. A complex vector-matrix multiplication of the input vector with the algorithm

matrix produces the output quantum state vector, |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩, whose coefficients represent the basis

states of the output quantum state. We use this approach, illustrated in Fig. 22, as a model for

designing hardware architectures for the proposed quantum emulation framework. This model is

generalized and can be used to emulate any quantum algorithm/circuit that can be reduced to a

single unitary operation, i.e., the transformation matrix can be pre-computed (lookup) generated

dynamically, or streamed in from an external memory source.

Fig. 22: CMAC-based emulation model

By reducing the algorithm/circuit to a single transformation and performing the necessary

vector-matrix product, the corresponding hardware implementation becomes independent of the

circuit depth, resulting in a space- and time-efficient emulation architecture. This methodology

assumes that the algorithm matrix is known and pre-computed, or can be dynamically generated.

A limitation of this methodology is that for some algorithms, pre-computing and storing the

algorithm matrix may not be feasible as the matrix dynamically changes with the algorithm input,

for example, Shor’s algorithm [4]. Dynamically generating the matrix is also difficult for

48

algorithms with no pattern in the matrix elements, but it is certainly doable. To mitigate the

limitations of pre-computing or dynamically generating the matrix and account for dynamically

changing algorithm inputs and matrices, we incorporate data streaming techniques for emulation

as elaborated in the next sections.

4.2.1 CMAC Architectures

To implement complex-valued vector-matrix multiplications on hardware (FPGA), we use a

generic complex multiply-and-accumulate (CMAC) unit, as shown in Fig. 23. The inputs of the

unit are complex values, i.e., elements of the input state vector, |𝜓𝜓𝑖𝑖𝑖𝑖(𝑗𝑗)⟩, and of the algorithm

matrix, 𝑈𝑈𝑖𝑖,𝑗𝑗. The complex values are represented using 64 bits, with 32 floating-point bits for each

of the real and imaginary parts. The benefit of using a CMAC is that different computation

techniques, each with space and time trade-offs, can be applied during computation. To operate on

complex values, the internal components of the CMAC (such as the multiplier and adder) have

been designed for complex operations. The CMAC operations are described in (20). One CMAC

unit performs, in total, four multiplications and four additions, see Fig. 23.

Fig. 23: Complex multiply-and-accumulate unit.

49

𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑖𝑖) = �𝑅𝑅𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑖𝑖, 𝑗𝑗)
𝑁𝑁−1

𝑗𝑗=0

𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑖𝑖) = �𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑖𝑖, 𝑗𝑗)

𝑁𝑁−1

𝑗𝑗=0

(20)

where,
𝑖𝑖 = 0,1,2, … , (𝑁𝑁 − 1)

𝑅𝑅𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑖𝑖, 𝑗𝑗) = �𝜓𝜓𝑖𝑖𝑖𝑖𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑗𝑗) × 𝑈𝑈𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑖𝑖, 𝑗𝑗)� − �𝜓𝜓𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑗𝑗) × 𝑈𝑈𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑖𝑖, 𝑗𝑗)� , and

𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑖𝑖, 𝑗𝑗) = �𝜓𝜓𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑗𝑗) × 𝑈𝑈𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑖𝑖, 𝑗𝑗)� + �𝜓𝜓𝑖𝑖𝑖𝑖𝐻𝐻𝑝𝑝𝐻𝐻𝑏𝑏(𝑗𝑗) × 𝑈𝑈𝑖𝑖𝑖𝑖𝐻𝐻𝑔𝑔(𝑖𝑖, 𝑗𝑗)�

We explored different hardware architectures, as listed in Table 4, by varying the number of

CMAC instances. The purpose of this design space exploration was to implement either fully

resource-optimized or fully latency-optimized designs to find an optimized CMAC configuration

for developing a scalable hardware emulation framework. Space and time complexities for these

architectures are also summarized in Table 4.

Table 4: Space and Time Complexities of CMAC Architectures

CMAC Architecture Complexity
Space (𝑶𝑶𝒔𝒔) Time (𝑶𝑶𝒕𝒕)

Single 𝑂𝑂(1) 𝑂𝑂(𝑁𝑁2)
𝑁𝑁-concurrent 𝑂𝑂(𝑁𝑁) 𝑂𝑂(𝑁𝑁)

Dual-sequential 𝑂𝑂(1) 𝑂𝑂(𝑁𝑁2)

Single-CMAC Architecture: For a fully resource-optimized design, we instantiate only one CMAC

unit and feed it with one algorithm matrix element and one input quantum state vector element for

each clock cycle. This is repeated for all 𝑁𝑁2 items in the 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴 matrix. For this architecture, the

time complexity is 𝑂𝑂(𝑁𝑁2), as shown in (21), where 𝑇𝑇𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 is the clock period. The hardware takes

𝑁𝑁 cycles to store each input coefficient and 𝑁𝑁2 cycles to process each element of the algorithm

matrix, in addition to some initial latency 𝐿𝐿1. The space complexity is 𝑂𝑂(1), as shown in (22),

since a single CMAC instance is being used.

𝑂𝑂𝑜𝑜𝑖𝑖𝑖𝑖𝑝𝑝 = (𝐿𝐿1 + 𝑁𝑁 + 𝑁𝑁2) × 𝑇𝑇𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 = 𝑂𝑂(𝑁𝑁2) (21)

50

𝑂𝑂𝑑𝑑𝑝𝑝𝐻𝐻𝑏𝑏𝑝𝑝 = 1 × 𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶 = 𝑂𝑂(1) (22)

N-Concurrent-CMAC Architecture: In a fully parallel implementation, 𝑁𝑁 CMAC instances are

used to operate concurrently, for processing each row of the 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴 matrix. The time complexity of

this design, as shown in (23), is effectively 𝑂𝑂(𝑁𝑁) as it takes 𝑁𝑁 cycles to store the input states, and

𝑁𝑁 more cycles to concurrently process all 𝑁𝑁 rows of the algorithm matrix, along with initial

latency 𝐿𝐿2. The space complexity now becomes 𝑂𝑂(𝑁𝑁), due to the 𝑁𝑁 instances of CMAC units, as

shown in (24).

𝑂𝑂𝑜𝑜𝑖𝑖𝑖𝑖𝑝𝑝 = (𝐿𝐿2 + 2𝑁𝑁) × 𝑇𝑇𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 = 𝑂𝑂(𝑁𝑁) (23)

𝑂𝑂𝑑𝑑𝑝𝑝𝐻𝐻𝑏𝑏𝑝𝑝 = 𝑁𝑁 × 𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶𝑠𝑠 = 𝑂𝑂(𝑁𝑁) (24)

Dual-sequential-CMAC Architecture: In this implementation, two CMAC instances are utilized

sequentially. After the initial latency 𝐿𝐿3, the first CMAC processes the first row of the matrix while

the input vector is being stored, and the second CMAC instance continues the subsequent

processing of the remaining rows using the stored inputs. This implementation has double the

resource requirements of the first architecture but has the benefit of improvement in execution

time. The time complexity is determined as in (25) and the space complexity is given by (26).

𝑂𝑂𝑜𝑜𝑖𝑖𝑖𝑖𝑝𝑝 = (𝐿𝐿3 + 𝑁𝑁2 − 1) × 𝑇𝑇𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘 = 𝑂𝑂(𝑁𝑁2) (25)

𝑂𝑂𝑑𝑑𝑝𝑝𝐻𝐻𝑏𝑏𝑝𝑝 = 2 × 𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶𝑠𝑠 = 𝑂𝑂(1) (26)

4.2.1 CMAC Computation Techniques

To investigate trade-offs in area and speed of the emulator, we leverage three computation

techniques: lookup, dynamic generation, and data streaming, and apply them for the CMAC

architecture. Benefits and drawbacks of each technique along with memory consumption analysis

is discussed in the following sections.

51

Lookup-based CMAC: Look-up-tables (LUTs) simplify hardware design by replacing complex

parts of computation with simple array-indexed operations. It is generally implemented as an array

in memory that stores pre-calculated values which results in low resource requirements. In the

CMAC architecture, we use the process of lookup to fetch pre-computed algorithm matrix values

from memory during complex computation operations. A limitation of this technique is that for

some algorithms, the algorithm matrix changes dynamically with the inputs, hence this method

will not be feasible in those cases. We combine this lookup approach with the dual-sequential-

CMAC architecture to optimize the design in terms of speed. The total memory, 𝑀𝑀𝐴𝐴, required

using this combination is derived in (27), assuming 32-bit floating point numbers are used for each

real and imaginary component of the complex matrix and vector elements.

𝑀𝑀𝐴𝐴 = 𝑀𝑀𝑣𝑣𝑝𝑝𝑏𝑏 + 𝑀𝑀𝑖𝑖𝐻𝐻𝑜𝑜 = 8𝑁𝑁 + 8𝑁𝑁2 = 2𝑖𝑖+3 + 22𝑖𝑖+3 (27)

Dynamic Generation-based CMAC: The lookup approach is optimized for speed, but storing the

algorithm matrix consumes resources that increase exponentially with circuit size. For resource

utilization optimization and improved scalability, we propose integrating the dual-sequential-

CMAC architecture with a dynamic approach that involves generating the algorithm matrix values

at runtime, storing only input vectors in memory. The advantage of this method is that it

significantly reduces the total memory utilization, 𝑀𝑀𝐷𝐷𝐴𝐴 of the simulation, as shown in (28). The

algorithm matrix 𝑈𝑈𝑄𝑄𝑄𝑄𝑄𝑄, see Fig. 4, is generated as part of the architecture using dedicated hardware

units as shown in Fig. 24. The operations of this architecture are summarized in (29).

𝑀𝑀𝐷𝐷𝐴𝐴 = 𝑀𝑀𝑣𝑣𝑝𝑝𝑏𝑏 = 8𝑁𝑁 = 2𝑖𝑖+3 (28)

52

Fig. 24: Hardware architecture for dynamic generation of the QFT algorithm matrix

𝑅𝑅(𝑖𝑖) = 𝑅𝑅(𝑖𝑖 − 1) ∙ 𝜔𝜔
𝑈𝑈(𝑖𝑖, 𝑗𝑗) = 𝑈𝑈(𝑖𝑖, 𝑗𝑗 − 1) ∙ 𝑅𝑅(𝑖𝑖)

(29)

where,

𝜔𝜔 = 𝑒𝑒�̂�𝚤
2𝜋𝜋
𝑁𝑁 = cos �

2𝜋𝜋
𝑁𝑁 � + 𝚤𝚤̂ ∙ sin �

2𝜋𝜋
𝑁𝑁 � ,

𝑖𝑖, 𝑗𝑗 = 0 →𝑁𝑁 − 1,

and 𝑅𝑅(0) = 1, 𝑈𝑈(0,0) = 1

The drawback of this technique is that the dynamic generation hardware can introduce pipeline

latencies depending on the complexity of the algorithm, degrading the speed of the overall

emulation. Furthermore, designing a dedicated hardware generation unit also requires us to find

and exploit some pattern in the algorithm matrix, which might not be possible in every case.

Generally, it is hard to efficiently generate the matrix values if the algorithm matrix doesn’t have

a special structure, therefore the generation hardware would be complex, and the approach may

not be feasible for particular algorithms.

Stream-based CMAC: While the lookup approach improves speed, it sacrifices area, and similarly,

while dynamic generation improves area, it sacrifices speed. We investigate a more optimal

approach that sustains both speed and area improvements and improves scalability and latency of

53

the emulator. Instead of being stored into on-chip resources (OCR) or on-board memory (OBM),

or dynamically generated during computation, the algorithm matrix elements are streamed in

during computation as an input stream from an external control processor. The cost of streaming

is typically the I/O channel latency between the control processor and the FPGA, which is

negligible relative to the compute time necessary for processing the algorithm matrix. The

contribution of this technique is that it greatly reduces the constraint on memory requirement

compared to the lookup-based technique, while also avoiding the hardware cost and bottleneck of

using the dynamic generation technique. As a result, a significantly higher number of qubits can

be emulated on the same FPGA area. The total memory requirement, 𝑀𝑀𝑆𝑆, using this method is

equivalent to 𝑀𝑀𝐷𝐷𝐴𝐴 and shown in (30). The top-level view of the emulator design using the data

streaming technique is shown in Fig. 25.

𝑀𝑀𝑆𝑆 = 𝑀𝑀𝐷𝐷𝐴𝐴 = 𝑀𝑀𝑣𝑣𝑝𝑝𝑏𝑏 = 8𝑁𝑁 = 2𝑖𝑖+3 (30)

Fig. 25: Architecture of the stream-based CMAC quantum emulator.

4.3 Kernel-based Emulation Model

While the CMAC emulation model is suitable for modeling dense algorithm matrices, a faster,

kernel-based model can be applied for more sparse matrices that involve a repeated set of core

operations. The core operations are modeled as a kernel using either quantum gates or classical

logic/arithmetic. The total input states are divided into groups and the kernel operation is applied

54

iteratively across all groups, one group every clock cycle. The hardware model for emulation using

this approach is shown in Fig. 26. As an example, the one-dimensional Quantum Haar Transform

(1D-QHT) algorithm is modeled for emulation.

Fig. 26: Kernel-based model for quantum algorithm emulation.

In the gate-based emulation model, QHT is emulated using Hadamard and SWAP gate models.

Alternatively, the proposed kernel-based model can be applied in the emulation of QHT to

significantly reduce hardware resource utilizations, hardware latencies, and improve the time-

complexity. We propose simplified hardware kernels for implementing 1D-QHT and inverse 1D-

QHT (1D-IQHT).

𝑄𝑄𝐻𝐻𝑇𝑇1𝐷𝐷 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜1𝐷𝐷 ∙ 𝑈𝑈𝑄𝑄𝐻𝐻𝑄𝑄1𝐷𝐷 ∙ 𝑃𝑃𝑖𝑖𝑖𝑖1𝐷𝐷
(31)

𝐼𝐼𝑄𝑄𝐻𝐻𝑇𝑇1𝐷𝐷 = (𝑃𝑃𝑖𝑖𝑖𝑖1𝐷𝐷)−1 ∙ 𝑈𝑈𝑄𝑄𝐻𝐻𝑄𝑄1𝐷𝐷 ∙ (𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜1𝐷𝐷)−1

For modeling 1D-QHT, the core operation, i.e. the Haar wavelet function, represented by 𝑈𝑈𝑄𝑄𝐻𝐻𝑄𝑄1𝐷𝐷 ,

see (7e), is reduced to a common kernel operation described by 𝐻𝐻, which will be applied iteratively

across groups of state coefficients. The Haar wavelet function is preceded and followed by

permutations on the state coefficients as shown in (31), where 𝑃𝑃𝑖𝑖𝑖𝑖1𝐷𝐷 is a perfect shuffle permutation

55

[35] on the input states, and 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜1𝐷𝐷 is a perfect shuffle permutation operation on the output states.

The inverse 1D-QHT operation (1D-IQHT) can be achieved by using inverse permutations, and

the same Haar wavelet function, also shown in (31). Hardware emulation models for 1D-QHT and

1D-IQHT are presented in Fig. 27. The steps of our proposed algorithm for 1D-QHT operation are

elaborated in Algorithm 1 in the appendix. For emulation, we model 1D permutations for hardware

using classical logic to save resources, instead of quantum CNOT gate models, as done in related

works. The 1D-QHT kernel is modeled using basic arithmetic operations and integrated with the

input and output permutations, which are modeled using dedicated input/output hardware

schedulers, see Fig. 26. Detailed architectures of the kernel and hardware schedulers are discussed

in later chapters.

(a) Emulation model for 1D-QHT.

(a) Emulation model for 1D-IQHT.

Fig. 27: Algorithm and hardware kernel architectures for emulation of 1D-QHT.

56

Chapter 5: Quantum-to-Classical Decoding

In this chapter, the existing approaches for Quantum-to-Classical (Q2C) data decoding are

discussed. A new methodology for Q2C, based on using Quantum Haar Transform (QHT), is also

proposed and discussed.

5.1 General Approach

In classical systems, measurement of a state is predictable and deterministic. However, in

quantum systems, the outcome of measurement of a quantum state is unpredictable and non-

deterministic. A quantum state resides in a superposition of its basis states and measurement

collapses the superposition and projects the quantum state to one of the basis states. For example,

when the quantum state |𝜓𝜓⟩ described in (3) is measured, the probability of the outcome being the

basis state |𝑖𝑖⟩ is |𝐶𝐶𝑖𝑖|2. This kind of measurement for which the result is one out of a set of basis

states is called a von Neumann measurement [52]. In any quantum system, there are measurement

gates which observe and project the state of a qubit or qubits onto a classical bit or register.

Generally, to extract useful classical information, a quantum circuit is executed multiple times and

the output is sampled for each execution by performing a measurement. The greater the number of

measurements, the more accurate is the extracted information.

Classica data for quantum computation is generally encoded as the set of amplitudes {𝐶𝐶𝑖𝑖} of

the basis states |𝑖𝑖⟩. Quantum-to-Classical (Q2C) data decoding is the process of reconstructing the

amplitudes of the final quantum state by measurement. The general approach for Q2C is to

determine the set of probabilities {|𝐶𝐶𝑖𝑖|2} of measuring the basis states |𝑖𝑖⟩, from which the set of

amplitudes {𝐶𝐶𝑖𝑖} can be obtained. The quantum circuit is iteratively sampled multiple times, and

the basis state outcome is measured for every iteration. The frequency of occurrence of each basis

57

state is recorded and using that count, a probability distribution or a histogram is constructed. The

basis state amplitudes can then be calculated from the probability distribution.

In applications such as quantum image processing, decoding image data from the final

quantum state requires high number of samples or iterations of the quantum circuit. Usually, the

number of iterations required to accurately recover the image data is in the range of thousand

samples. Performing a large number of circuit executions introduces significant overhead and has

an adverse effect on the execution time. In addition, the accuracy or fidelity of the reconstructed

amplitudes is low due to statistical errors that arise as a result of the finite number of

measurements/sampling of the non-deterministic outcomes of the quantum system.

5.2 Quantum-to-Classical Decoding Using Quantum Fourier Transform

An alternative approach to Q2C data decoding for image processing applications was proposed

in [16]. Instead of reconstructing all the amplitudes from the quantum state, the proposed approach

was extracting a collective property from the amplitudes stored in the quantum state. For example

in classical image processing, one can obtain useful information about any image by applying

Fourier transform and projecting it in the frequency domain. Similarly, in quantum image

processing, by applying the quantum Fourier transform (QFT) we can observe the frequency

components of an image, without having to measure all the pixel data. For example, consider an

image represented as a one-dimensional time series of pixels and encoded as the amplitudes of a

quantum state. A QFT circuit is applied and then the output is measured. It is likely that the

resulting basis state outcome will correspond to a peak in the Fourier transformed image. This

suggests that the corresponding frequency component is strongly represented in the Fourier

transform of the image [16]. For specific image processing applications, this measurement in the

Fourier bases gives us information about properties of the transformed image without having to

58

decode the actual image pixels. The number of iterations/samples of the quantum circuit will be

relatively less than those required in the general approach, as we are no longer reconstructing the

exact and complete probability distribution, but are only interested in measuring the Fourier

transformed basis states. The QFT-based methodology for Q2C decoding is illustrated in Fig. 28.

Fig. 28: Methodology overview for QFT-based quantum-to-classical data decoding

In this methodology, the output of a quantum algorithm/circuit, represented by 𝑛𝑛 qubits, is passed

through a QFT circuit. The quantum circuit for 𝑛𝑛-qubit QFT is shown in Fig. 4. The QFT changes

the basis of the qubits to the Fourier bases, and the amplitudes of the basis states represent data in

the frequency domain. The QFT output is passed to a measurement unit that repeats the circuit

execution for a specified number of iterations, samples the output for every iteration, and produces

a probability distribution. From the probability distribution, the basis states with the highest

probabilities correspond to the frequency components present in the Fourier transformed data. The

QFT-based method for Q2C data decoding is particularly interesting for applications involving

image or audio processing, where properties of the data such as frequency content and/or

bandwidth are useful for analyzing the output. The drawback of this method is that it does not

decode the actual data encoded in the quantum state, but only reveals a collective property or

feature of the data.

59

5.3 Quantum-to-Classical Decoding Using Quantum Haar Transform

An important feature of the Quantum Haar Transform (QHT) is that it preserves the spatial and

temporal locality of data. In addition, QHT is also decomposable for multiple levels. These features

make QHT an effective tool for dimension reduction, which is the process of reducing the number

of features of a data set while retaining some form of spatial and/or temporal variation [49]. We

propose a methodology for Q2C data decoding that incorporates use of the QHT algorithm and

dimension reduction. By applying multi-level decomposable QHT, data represented by 𝑛𝑛 qubits

can be transformed to data represented by a lower number of qubits 𝑘𝑘 = (𝑛𝑛 − 𝑙𝑙 ∙ 𝑑𝑑), where 𝑘𝑘 < 𝑛𝑛,

𝑙𝑙 is the number of decomposition levels, and 𝑑𝑑 is the dimensionality of the data. The objective of

performing dimension reduction by QHT is to use less qubits to represent the data and therefore

reduce the time taken during measurement while maintaining higher fidelity. Fig. 29 shows the

proposed methodology for QHT-based Q2C data decoding.

Fig. 29: Methodology overview for QHT-based quantum-to-classical data decoding

In our proposed methodology, QHT is applied to the output of a quantum algorithm,

represented by n qubits. The QHT algorithm splits the data into bands with low and high

frequencies. For example, a one-level two-dimensional (2D) QHT splits the data into four

frequency quadrants: low-low (LL), low-high (LH), high-low (HL), and high-high (HH). The

spectrum density of the LL frequency components is higher compared to the others, and contains

60

the most relevant and useful information that approximates the original data. At the output of the

QHT circuit, the 𝑘𝑘 qubits representing the low frequency bands are measured. It should be noted

that dimension reduction reduces features of the data, so the amplitudes decoded from the 𝑘𝑘 qubits

will not be the exact amplitudes represented by the original 𝑛𝑛 qubits. However, the data will retain

its spatial and/or temporal locality and will have resemblance in structure with the original data.

The proposed QHT-based method for Q2C data decoding will be useful in applications such as

quantum image processing for efficiently visualizing transformed images.

61

Chapter 6: Proposed Use Cases

In this chapter, we propose three use cases of quantum algorithms such as Quantum Wavelet (Haar)

Transform and Quantum Grover’s search. Specifically, we propose dimension reduction using

multi-level multi-dimensional Quantum Haar Transform (QHT) and present the corresponding

depth optimized QHT circuits. We also propose dynamic multi-pattern search using Quantum

Grover’s Search and present the corresponding methodology and quantum circuits. Finally a novel

quantum application is presented: efficient Quantum Pattern Recognition based on dimension

reduction techniques, using both Quantum Haar Transform and Quantum Grover’s Search. These

use cases are evaluated using the proposed emulation framework and all corresponding hardware

architectures for emulation are presented.

6.1 Dimension Reduction using Quantum Wavelet (Haar) Transform

Dimension reduction is a process of reducing the number of features of a data set while

retaining some form of spatial or temporal variation from the original data set [53]. The classical

wavelet transform (WT) has been shown to achieve dimension reduction efficiently [53] and can

be used in various applications that use hyperspectral data, for example: remote sensing

hyperspectral imagery, mineralogy, surveillance, etc. The WT uses a set of non-sinusoidal

functions, usually called mother wavelets, that are both spatially and temporally localized [34].

This results in a very important feature unique to WT which is preservation of spatial locality of

data. In other words, WT gives information about both time and frequency of input data.

Depending on the type of data and the application in which this data is being used, multi-level and

multi-dimensional WT (e.g., 1D wavelet transform (1D-WT) and 2D wavelet transform (2D-WT))

can be used for dimension reduction. For example, while the data in remote sensing hyperspectral

imagery is in the form of large 3D data cubes, 1D-WT was previously proposed [53] for efficient

62

dimensionality reduction of such data cubes. In the experimental work in [33], five levels of

wavelet decomposition were used on images of size 217 × 512 pixels by 192 bands to achieve

× 32 reduction in data volume.

In current and future large-scale applications, the volume of data can be overwhelming. For

example, hyperspectral image cubes are typically hundreds of pixels in width and height [53], with

220-240 frequency bands [33]. Hence, it is necessary to investigate and apply newer paradigms of

information processing and storage for supporting future applications at full bandwidths. In

quantum information processing, exponentially greater amount of information can be held in the

state of quantum system compared to a classical binary system. Thus, we propose using quantum

information processing techniques such as Quantum Wavelet (Haar) Transform (QHT) for the

processing of high volumes of data in large-scale applications. In the next sections, we elaborate

our methodology in which we propose multi-level, multi-dimensional QHT to achieve dimension

reduction. We propose depth-optimized quantum circuits for dimension reduction using QHT and

present the corresponding emulation hardware architectures.

6.1.1 Methodology Overview

Our proposed methodology for dimension reduction using QHT is shown in Fig. 30. Input

image data first undergoes a 𝑑𝑑-dimensional QHT, e.g., one-dimensional QHT (1D-QHT) or two-

dimensional QHT (2D-QHT) operation. The 𝑑𝑑-dimensional QHT operations can have multiple

decomposition levels and the input image is separated into a number of low frequency and high

frequency replications, depending on the number of decomposition levels. The lowest frequency

image replication retains the principal components of the input data without significant data loss.

More importantly, the mirror images have reduced dimensionality and thus can be used for

63

reducing pre-processing overhead or communication bandwidth congestion. Multi-level multi-

dimensional inverse quantum Haar transform (e.g., 1D-IQHT or 2D-IQHT) is then applied to

reconstruct the original data.

Fig. 30: Dimension reduction using multi-level, multi-dimensional QHT and IQHT.

As shown in Fig. 30, we propose performing 𝑑𝑑-dimensional QHT and IQHT operations in two

ways: (1) Sequential QHT, i.e., by cascading 1D operations and multiple 1D permutation sets, and

(2) Parallel QHT, i.e., applying a single 𝑑𝑑-dimensional Haar kernel. We also show that Sequential

and Parallel QHT/IQHT circuit variants are decomposable, to perform multi-level-decomposable

QHT/IQHT, see Fig. 30. For example, using this methodology, a 64𝐾𝐾 × 64𝐾𝐾 image can be

reduced to a smaller resolution of 32 × 32 using a 32-qubit, 12-level QWT decomposition. The

data (pixels) are encoded as the coefficients of 𝑁𝑁 basis states of a quantum state, where 𝑁𝑁 = 2𝑖𝑖

and 𝑛𝑛 is the number of qubits, i.e., 32. The quantum circuits for performing Sequential/Parallel

QHT and their packet/pyramid-decomposable forms are presented in the next sections, as well as

our proposed optimizations that significantly reduce the circuit depths. The corresponding

64

algorithms and hardware architectures for emulation of multi-dimensional, multi-level QHT are

also presented.

6.1.2 Optimized Quantum Circuits

We denote a general 𝑑𝑑-dimensional QHT operation as 𝑈𝑈𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄. The 𝑈𝑈𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 operation

consists of three parts: (1) input permutations applied to the input state vector, (2) Haar-transform

operations, and (3) output permutations applied to produce the output state vector. These

operations are described for 1D, 2D, and 3D-QHT in Algorithms 1, 2, and 3 respectively in the

Appendix. In the quantum domain, the Haar-transform operations are performed using d H gates.

The input/output permutations are performed using perfect-shuffle-permutation (PSP) operations.

PSPs are fundamental in classical signal and image processing [54]. Quantum PSPs can be

described directly in terms of their effect on the ordering of qubits [35] [55] [56]. We present two

quantum PSP operations that will be used in building our proposed quantum circuits, i.e., Rotate-

Left (RoL) and Rotate-Right (RoR), see (32) and (33) respectively. RoL(𝑛𝑛 − 1, 0) and RoR(𝑛𝑛 −

1, 0) operations are essentially circular (left/right) shifts of qubits. RoL/RoR can be implemented

with networks of SWAP gates, see Fig. 31(a). The number of levels of SWAP gates required for

RoL(𝑛𝑛 − 1, 0)/RoR(𝑛𝑛 − 1, 0) is simply 𝑛𝑛 − 1. The gate symbols we have used for RoL/RoR in

our proposed circuits are shown in Fig. 31(a).

𝑅𝑅𝑅𝑅𝐿𝐿(𝑛𝑛 − 1, 0): |𝑞𝑞𝑖𝑖−1𝑞𝑞𝑖𝑖−2 … 𝑞𝑞1𝑞𝑞0⟩ → |𝑞𝑞𝑖𝑖−2 … 𝑞𝑞1𝑞𝑞0𝑞𝑞𝑖𝑖−1⟩ (32)

𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛 − 1, 0): |𝑞𝑞𝑖𝑖−1𝑞𝑞𝑖𝑖−2 … 𝑞𝑞1𝑞𝑞0⟩ → |𝑞𝑞0𝑞𝑞𝑖𝑖−1𝑞𝑞𝑖𝑖−2 … 𝑞𝑞1⟩ (33)

65

(a) Quantum circuits for Perfect Shuffle Permutations.

(b) Optimizations for Sequential QHT.

(c) Optimizations for Parallel QHT

Fig. 31: Quantum circuits for Sequential and Parallel QHT.

66

We present two generalized circuit variants that perform the operation 𝑈𝑈𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄: Sequential

(𝑑𝑑-stage) 𝑑𝑑-dimensional QHT, and Parallel (1-stage) 𝑑𝑑-dimensional QHT. We also present

unoptimized and optimized circuits for each variant. The 𝑈𝑈𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 operation can be performed

by any of the unoptimized and/or optimized circuit variants presented in Figs. 31(b) and 31(c) for

which expressions for time-delay are also derived. We also show how the Sequential and Parallel

circuit variants are decomposable in packet and pyramidal forms, see Figs. 32(a) and 32(b). The

notations that have been used in the time-delay expressions are defined as:

𝑁𝑁 ≡ Number of data samples

𝑑𝑑 ≡ Number of data dimensions

𝑙𝑙 ≡ Number of decomposition levels

𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚 ≡ Maximum number of decomposition levels

𝑁𝑁𝑖𝑖 ≡ Number of data samples in dimension i

𝑛𝑛𝑖𝑖 = ⌈log2 𝑁𝑁𝑖𝑖⌉ ≡ Total number of qubits representing dimension 𝑖𝑖

𝑛𝑛 = �𝑛𝑛𝑖𝑖 ≡ Total number of qubits
𝑑𝑑−1

𝑖𝑖=0

𝑛𝑛𝑖𝑖𝐻𝐻𝑚𝑚 = max
0 ≤ 𝑖𝑖 < 𝑑𝑑−1

(𝑛𝑛𝑖𝑖) = Maximum number of qubits across all 𝑑𝑑 dimensions

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 ≡ min
0 ≤ 𝑖𝑖 < 𝑑𝑑−1

(𝑛𝑛𝑖𝑖) = Minimum number of qubits across all 𝑑𝑑 dimensions

𝑙𝑙𝑏𝑏𝑜𝑜𝑑𝑑𝑑𝑑𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 = Maximum number of levels for lossless decomposition

𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑘𝑘𝑜𝑜 = �

𝑛𝑛
𝑑𝑑
� ≡ Maximum number of levels for packet decomposition

𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑦𝑦𝐻𝐻 = �min �

𝑛𝑛
𝑑𝑑

, 1 +
𝑛𝑛 − 𝑛𝑛0
𝑑𝑑 − 1 �

� ≡ Maximum number of levels for pyramidal decomposition

𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 ≡ Time delay of the SWAP gate

𝜏𝜏𝐻𝐻 ≡ Time delay of the Hadamard gate

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏 ≡ Total time delay

𝑈𝑈𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 ≡ Generic 𝑑𝑑-dimensional QHT operation

𝑈𝑈𝑝𝑝𝑘𝑘𝑜𝑜,𝑏𝑏
𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 ≡ 𝑑𝑑-dimensional QHT at 𝑙𝑙 level of packet decomposition

𝑈𝑈𝑝𝑝𝑦𝑦𝐻𝐻,𝑏𝑏
𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 ≡ 𝑑𝑑-dimensional QHT at 𝑙𝑙 level of pyramidal decomposition

𝑈𝑈𝑝𝑝𝐻𝐻𝑏𝑏𝑘𝑘𝑝𝑝𝑜𝑜
𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 ≡ Overall 𝑑𝑑-dimensional QHT of packet decomposition

𝑈𝑈𝑝𝑝𝑦𝑦𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑑𝑑𝐻𝐻𝑏𝑏
𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 ≡ Overall 𝑑𝑑-dimensional QHT of pyramidal decomposition

(34)

67

Packet and Pyramidal decompositions

We show that 𝑑𝑑-dimensional QHT is packet/pyramidal decomposable for 𝑙𝑙 levels. In packet

decomposition, see Fig. 32(a), 𝑈𝑈𝑑𝑑−𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄 is repeatedly applied for every level on all the data

(qubits) and all data qubits are required throughput the process. The maximum number of levels

for packet decomposition, 𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑘𝑘𝑜𝑜 see (34), depends on the total number of qubits 𝑛𝑛 and the number

of data dimensions 𝑑𝑑. However, for lossless decomposition, i.e., no data dimensions are lost during

decomposition, the maximum number of levels is equal to the minimum number of qubits 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖

across all 𝑑𝑑 dimensions.

In pyramidal decomposition, see Fig. 32(b), for each level of decomposition, the 𝑑𝑑-

dimensional QHT operates on fewer data qubits. Specifically, 𝑑𝑑 qubits (1 qubit per each

dimension) are discarded after every decomposition level, see 31(b). Similar to packet

decomposition, the maximum number of levels for lossless pyramidal decomposition is also 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖.

The expression for the maximum number of possible pyramidal decomposition levels, 𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑦𝑦𝐻𝐻 , is

given in (34). Pyramidal decomposition has certain advantages over packet in that the size and

depth of the QHT circuit is reduced after every decomposition level. However, one drawback is

that more inter-level permutations are required, see Fig. 32(c). The time-delay for inter-level

pyramidal permutations could be derived using Fig. 32(c) and is given in (35).

𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 = �𝑛𝑛 − 𝑛𝑛0 − (𝑑𝑑 − 1)
𝑙𝑙
2�

(𝑙𝑙 − 1) ∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 (35)

68

(a) Packet decomposition

(b) Pyramidal decomposition (c) Inter-level pyramidal permutations

Fig. 32: Multi-level decomposition of d-dimensional QHT.

Sequential and Parallel QHT

For Sequential QHT, d-dimensional QHT can be performed by cascading d 1D-QHT

transforms, see Fig. 31(b). Each 1D-QHT, 𝑈𝑈1𝐷𝐷−𝑄𝑄𝐻𝐻𝑄𝑄, consists of RoL, H gates, and RoR gates, see

Fig. 31(a). The 1D-QHT is consecutively repeated for every dimension indexed from 0 to 𝑑𝑑 − 1.

69

The (unoptimized) sequential QHT circuit could be decomposed in multi-level packet or

pyramidal forms. The total time-delays for packet and pyramidal decompositions with 𝑙𝑙 levels is

provided in (36).

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑑𝑑𝑝𝑝𝑞𝑞,𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 = ��(2𝑑𝑑 − 1)𝑛𝑛 − 2�𝑖𝑖 ∙ 𝑛𝑛𝑖𝑖 − 𝑑𝑑

𝑑𝑑−1

𝑖𝑖=0

� ∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 + 𝑑𝑑 ∙ 𝜏𝜏𝐻𝐻� ∙ 𝑙𝑙
(36)

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑑𝑑𝑝𝑝𝑞𝑞,𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑦𝑦𝐻𝐻 = 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏

𝑑𝑑𝑝𝑝𝑞𝑞,𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 + 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 −
𝑑𝑑2 ∙ 𝑙𝑙(𝑙𝑙 − 1)

2
∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆

The d-stage sequential QHT circuit can be optimized as shown in Fig. 31(b). For each 1D-

QHT operation, the RoL operation is eliminated, and the kernel (H gate) is shifted up to its

corresponding dimension 𝑖𝑖, where 𝑖𝑖 = 0,1, 𝐼𝐼. ,𝑑𝑑 − 1. This reduces the consecutive RoR operation

(less depth) and thus reduces the overall circuit depth. The total time-delays for the optimized

sequential packet and pyramidal decomposable d-dimensional QHT circuits are given in (37).

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑑𝑑𝑝𝑝𝑞𝑞,𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 = �(𝑛𝑛 − 𝑑𝑑) ∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 + 𝑑𝑑 ∙ 𝜏𝜏𝐻𝐻� ∙ 𝑙𝑙

(37)
𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑑𝑑𝑝𝑝𝑞𝑞,𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑦𝑦𝐻𝐻 = 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏

𝑑𝑑𝑝𝑝𝑞𝑞,𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 + 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 −
𝑑𝑑 ∙ 𝑙𝑙(𝑙𝑙 − 1)

2
∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆

In Parallel QHT the Haar operation (H gates) is applied in parallel (1-stage) instead of in

sequence on each of the d dimensions, see Fig. 31(c). The RoR and RoL operations are grouped

into sets of preceding and proceeding permutations respectively, see Fig. 31(c). This circuit variant

can be used in packet or pyramidal decomposition. The total time-delays of the packet and

pyramidal decomposable circuits are given in (38).

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑝𝑝𝐻𝐻𝐻𝐻,𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 = ��2𝑛𝑛 − 𝑛𝑛𝑑𝑑−1 − (2𝑑𝑑 − 1)� ∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 + 𝜏𝜏𝐻𝐻� ∙ 𝑙𝑙

(38)
𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑝𝑝𝐻𝐻𝐻𝐻,𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑦𝑦𝐻𝐻 = 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏

𝑝𝑝𝐻𝐻𝐻𝐻,𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 + 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 −
(2𝑑𝑑 − 1) ∙ 𝑙𝑙(𝑙𝑙 − 1)

2
∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆

The parallel (1-stage) QHT is optimized further by positioning the H gates separated by 𝑛𝑛𝑖𝑖

qubits, where 𝑖𝑖 = 0,1, 𝐼𝐼. ,𝑑𝑑 − 1, see Fig. 31(c). Due to this shift, no preceding permutations (RoL

gates) are required. The proceeding RoR operations are also reduced in depth and can be applied

70

in parallel as they are independent of each other. The total time-delay for the optimized parallel

decomposable (packet and pyramidal) d-dimensional QHT circuits is given in (39).

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑝𝑝𝐻𝐻𝐻𝐻,𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 = �(𝑛𝑛𝑖𝑖𝐻𝐻𝑚𝑚 − 1) ∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 + 𝜏𝜏𝐻𝐻� ∙ 𝑙𝑙

(39)
𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑝𝑝𝐻𝐻𝐻𝐻,𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑦𝑦𝐻𝐻 = 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏

𝑝𝑝𝐻𝐻𝐻𝐻,𝑜𝑜𝑝𝑝𝑜𝑜.,𝑝𝑝𝑘𝑘𝑜𝑜 + 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 −
𝑙𝑙(𝑙𝑙 − 1)

2
∙ 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆

Packet vs Pyramidal QHT

We define the general time-delays for packet and pyramidal decomposable circuits as 𝑞𝑞𝑝𝑝𝑘𝑘𝑜𝑜 and

𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻, irrespective of the type of QHT circuit or the optimization (serial/parallel or

optimized/unoptimized). Therefore, a general time expression can be derived as (40) from the

equations given in (30)-(33).

 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻 = 𝑞𝑞𝑝𝑝𝑘𝑘𝑜𝑜 + 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 − ∆𝑞𝑞 (40)
where,

∆𝑞𝑞 = 𝑓𝑓(𝑑𝑑) ∙ 𝑏𝑏(𝑏𝑏−1)
2

, and 𝑓𝑓(𝑑𝑑) =

⎩
⎨

⎧ 𝑑𝑑2 → 𝑠𝑠𝑒𝑒𝑞𝑞. 𝑢𝑢𝑛𝑛𝑅𝑅𝑢𝑢𝑞𝑞
𝑑𝑑 → 𝑠𝑠𝑒𝑒𝑞𝑞. 𝑅𝑅𝑢𝑢𝑞𝑞

(2𝑑𝑑 − 1) → 𝑢𝑢𝑑𝑑𝑟𝑟.𝑢𝑢𝑛𝑛𝑅𝑅𝑢𝑢𝑞𝑞
1 → 𝑢𝑢𝑑𝑑𝑟𝑟. 𝑅𝑅𝑢𝑢𝑞𝑞

For pyramidal to be faster than packet, 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻 − 𝑞𝑞𝑝𝑝𝑘𝑘𝑜𝑜 ≤ 0 should be true, i.e., 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 − ∆𝑞𝑞 ≤ 0.

Using the expression for 𝑞𝑞𝑝𝑝𝑦𝑦𝐻𝐻−𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖 and ∆𝑞𝑞, we can derive an expression for the minimum number

of decomposition levels, 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑦𝑦𝐻𝐻 required for pyramidal to be faster than packet, given in (41).

𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑦𝑦𝐻𝐻 =

2(𝑛𝑛 − 𝑛𝑛0)
𝑓𝑓(𝑑𝑑) + 𝑑𝑑 − 1

(41)

6.1.3 Hardware Architectures for Emulating Quantum Haar Transform

We propose kernel-based emulation algorithms for multi-level 1D-QHT, 2D-QHT, and 3D-

QHT and they are presented in the Appendix as Algorithms 1, 2, and 3 respectively. The algorithms

perform multi-level decompositions of 𝑑𝑑-D-QHT operations based on a 𝑑𝑑-dimensional Haar

71

wavelet kernel. The kernel functionality can be represented by a set of operations applied to 2𝑑𝑑

data points, and is preceded and followed by perfect shuffle permutation operations [35] on the

input and output data points. The permutation operations are performed by means of index

calculations and scheduling. Algorithm 1 (in the appendix) performs multi-level decompositions

of 1D-QHT operations based on a multi-dimensional Haar wavelet kernel. The kernel functionality

is described by a set of operations applied to input states/pixels, and is preceded and followed by

1D perfect shuffle permutation operations [35] on the input and output states/pixels. The

permutation operations are performed by means of index calculations and scheduling. Algorithm

2 (in the appendix) performs 2D-QHT on a set of N input pixels X and produces an output pixel

set Y. The first stage in the algorithm is to perform input permutations on the input pixels, followed

by 2D Haar kernel operations on 2𝑑𝑑 = 4 neighboring pixels every cycle, and then finally output

permutations are performed producing the output set of pixels. The 3D-QHT operation in

Algorithm 3 (in the appendix) is very similar, performing a 3D Haar kernel on 2𝑑𝑑 = 8 neighboring

pixels every cycle, preceded and followed by input and output permutations on the pixels.

The hardware architectures equivalent to Algorithm 1 (in the appendix) for emulation of 1D-

QHT are shown in Figs. 33(a), (b), and (c). The first stage in Algorithm 1 is the input permutation

𝑃𝑃𝑖𝑖𝑖𝑖1𝐷𝐷 . The permutation can be emulated by gate models of RoR and RoL operations but that incurs

high resource utilization in the corresponding hardware architecture. For this reason, classical

models are used that involve simple index scheduling and the corresponding emulation

architecture is shown in Fig. 33(a). The input is a vector of quantum state coefficients which are

written to a memory array in the index order 0 to 𝑁𝑁 − 1. Two coefficient values are then read out

each clock cycle, with the scheduler generating the read indices 𝑖𝑖𝑋𝑋00 and 𝑖𝑖𝑋𝑋10 according to the input

permutation, see Algorithm 1 (in the appendix). The scheduler calculates a row index 𝑖𝑖𝐻𝐻𝑜𝑜𝑟𝑟 and a

72

column index 𝑖𝑖𝑏𝑏𝑜𝑜𝑏𝑏, to determine the output indices. These are used to write the output state into an

output buffer. Optimizations such as replacing multiplications and divisions by powers of two with

logical shifts are done for more time and resource efficient hardware emulation. A floor operation

module is also implemented for the scheduler.

As shown in Fig. 31, the Haar transformations, are modeled using Hadamard gates. The

Hadamard operation reduces to kernel operations on a set of 2𝑑𝑑 coefficients and the kernel

operation is iterated over all data points or states. The emulation architecture for the 1D Haar

kernel is shown in Fig. 33(b). The design takes in 2 input coefficients, applies the kernel operations

which involve addition and division, and outputs four coefficients per clock cycle. Conventional

operator sharing techniques and logical shifts are applied to optimize for speed and area.

The final stage in Algorithm 1 (in the appendix) is the output permutation, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜1𝐷𝐷 . The

corresponding emulation architecture is shown in Fig. 33(c) and works similarly to the input

permutation scheduler. The input vector of coefficients is written to a memory array, 2 values per

clock cycle, with the scheduler generating the write indices 𝑖𝑖𝑌𝑌00 and 𝑖𝑖𝑌𝑌10 according to the output

permutation described in Algorithm 1 (in the appendix). The permuted coefficients are then read

out from memory 2 values per clock cycle.

The architectures equivalent to Algorithm 2 (in the appendix) for emulation of 2D-QHT are

shown in Figs 33(d), (e), and (f). The operations of the architectures are similar to those of 1D-

QHT. Four coefficient values are read each clock cycle, with the input scheduler generating the

read indices 𝑖𝑖𝑋𝑋00, 𝑖𝑖𝑋𝑋01, 𝑖𝑖𝑋𝑋11, and 𝑖𝑖𝑋𝑋10 see Fig. 33(d) and Algorithm 2 (in the appendix). The input

scheduler calculates a row index 𝑖𝑖𝐻𝐻𝑜𝑜𝑟𝑟 and a column index 𝑖𝑖𝑏𝑏𝑜𝑜𝑏𝑏, to determine the output indices

which are used to write the output state into an output buffer. 2D Haar kernel operation, see Fig.

73

33(e), takes in 4 input coefficients, applies the kernel operations which involve addition and

division, and outputs four coefficients per clock cycle. The 2D output permutations scheduler, see

Fig. 33(f), works similar to that for 1D, and operates on 4 coefficient values per clock cycle.

(a) Input permutations scheduler for 1D-QHT.

(b) Haar kernel for 1D-QHT.

(c) Output permutations scheduler for 1D-QHT.

74

(d) Input permutations scheduler for 2D-QHT.

(e) Haar kernel for 2D-QHT.

(f) Output permutations scheduler for 2D-QHT.

Fig. 33: Hardware architectures for emulation of 1D-QHT and 2D-QHT.

6.2 Dynamic Multi-Pattern Search using Quantum Grover’s Search

Generally, Grover’s algorithm consists of two main steps, the oracle (also called phase

inversion) and diffusion (also called inversion about the mean) [16]. For both traditional single-

75

pattern as well as multi-pattern Grover’s algorithm, the oracle circuit has to be statically set up

before computations for every input search pattern, which is inconvenient for fast and dynamic

search. Therefore, we present a modified Grover’s algorithm capable of fast, dynamic searches

with multiple patterns.

6.2.1 Proposed Methodology

Our proposed methodology for dynamic multi-pattern Grover’s search is shown in Fig. 34 and

consists of two modifications compared to the conventional single-pattern Grover’s search. Our

first modification adds a dynamic oracle circuit 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 that locates items at the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑

indices of the search list. This is followed by a conventional Grover’s diffusion circuit 𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖

that increases the probabilities of locating the pattern(s). The oracle and diffusion quantum circuits

are repeated for m iterations to produce an output quantum state, where m is the optimal number

of iterations given by (10). Our second modification adds a permutation 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 of the basis of

the quantum state, which is critical for successfully locating the target pattern(s).

Fig. 34: Proposed/modified quantum circuit for multi-pattern Quantum Grover’s Search.

76

Separate from the oracle and diffusion stages, the permutation can be performed using either

classical or quantum gates. The proposed permutation circuit uses ancilla bits/qubits, in which the

target pattern(s) are encoded, to assign the probability coefficients to the correct basis states.

6.2.2 Implementation

The proposed quantum circuit for multi-pattern Grover’s algorithm, see Fig. 34, has four sets

of inputs: 1) a set of n compute qubits |𝜓𝜓⟩ which are all initialized to the ground state |0⟩, i.e.,

|𝜓𝜓⟩ = |0⟩⨂𝑖𝑖, 2) a single flag ancilla qubit initially set to the ground state |0⟩, 3) a set of 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑

entries of statically initialized n ancilla qubits, i.e., 𝑆𝑆 = �|0⟩, |1⟩, … , �𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑−1��, and 4) a set of

𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 entries of dynamically changing n ancilla qubits that represent the input search patterns

in |𝜓𝜓𝑖𝑖𝑖𝑖⟩, i.e., 𝑃𝑃 = �|𝑃𝑃𝑜𝑜⟩, |𝑃𝑃𝑜𝑜⟩, … , �𝑃𝑃𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝−1��. For example, if 𝑃𝑃 = {|3⟩, |7⟩} then the basis states

to be located and amplified in the initial quantum state are |3⟩ and |7⟩ and 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 = 2.

The first step, as shown in Fig. 34, is to initialize the input state of the qubits, |0⟩, to a uniform

superposition state, |𝜓𝜓𝑖𝑖𝑖𝑖⟩. This is accomplished by applying an H gate to each one of the n qubits,

i.e., 𝐻𝐻⨂𝑖𝑖 = 𝐻𝐻⨂𝐻𝐻⨂…⨂𝐻𝐻, which sets equal amplitudes to all states in |𝜓𝜓𝑖𝑖𝑖𝑖⟩ (|0⟩, |1⟩, … , |𝑁𝑁 − 1⟩).

The input qubit state vector |𝜓𝜓𝑖𝑖𝑖𝑖⟩ after the application of the H gate is expressed mathematically

in (42) as:

|𝜓𝜓𝑖𝑖𝑖𝑖⟩ =
1
√𝑁𝑁

�|𝑖𝑖⟩
𝑁𝑁−1

𝑖𝑖=0

 (42)

Once the input qubits are in a uniform superposition state, a modified dynamic oracle operation

𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 and an unmodified diffusion operator 𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖, are applied m consecutive times,

amplifying the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 states. As only the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 states will be amplified, a

permutation step, 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝, is performed to assign the high amplitudes to the target states based

77

on the input patterns P. These iterations produce the final output state, |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩. This process can

be represented using a single unitary matrix 𝑈𝑈𝐴𝐴 = �𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖 ∙ 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝�
𝑖𝑖

, and m is the optimal

number of iterations given by (10). The probability, 𝑃𝑃𝑑𝑑𝑜𝑜𝑏𝑏𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑, of successfully finding a desired

pattern in the final output state |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ is expressed in (43) [37], where N is the size of the unsorted

list of elements and 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 equals the number of solutions/patterns being searched for such that

𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 ≤ 𝑁𝑁.

𝑃𝑃𝑑𝑑𝑜𝑜𝑏𝑏𝑏𝑏𝑝𝑝𝑑𝑑𝑑𝑑 = �sin�(2𝑚𝑚 + 1) × 𝜃𝜃��2

𝜃𝜃 = sin−1 ��𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝
𝑁𝑁

�, and 0 < 𝜃𝜃 ≤ 𝜋𝜋
2

(43)

6.2.3 Modified Oracle and Diffusion Circuits

Our proposed oracle model, 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝, uses cX gates to dynamically modify the target pattern as

seen in Fig. 34. Dynamic modification of the search pattern allows us to extend and generalize the

algorithm to dynamically search for any pattern with a single quantum circuit. In the conventional

Grover’s algorithm, a different oracle is needed for every search pattern, requiring a new quantum

circuit for each pattern. In our modified Grover’s algorithm, the cX gates in each oracle are

controlled by ancilla qubits that are set to the current pattern that is being amplified, |𝑖𝑖⟩, as seen in

Fig. 35(a). To generalize the circuit further, only the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 amplitudes are inverted.

Therefore, in single-pattern search, the oracle ancilla qubits are set to |0⟩ so that only the amplitude

on the first state will be inverted. For multi-pattern search, we apply cascaded, incremental single-

pattern oracle quantum circuits to invert the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 amplitudes as seen in Fig. 35(b). As

oracle circuits are mutually exclusive, i.e., each oracle circuit only inverts a single state and does

not affect any other state, they could be sequentially cascaded in any arbitrary order, e.g., an

78

ascending order as shown in Fig. 35(b). The output from the oracle, |𝜓𝜓1⟩, is subsequently provided

to the next stage, i.e., Grover’s diffusion, for amplification.

(a) Modified Grover’s oracle for a single solution/pattern.

(b) Modified Grover’s oracle for multiple solutions/patterns

Fig. 35: Modified oracle circuits for the proposed multi-pattern Quantum Grover’s Search

The diffusion circuit, 𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖, is identical to the conventional diffusion circuit used in

Grover’s algorithm, see Fig. 5(b). The diffusion circuit only amplifies the states negated by the

oracle, such that their resultant amplitudes are greater than their values before the oracle operation

was performed. Because the oracle only inverts the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 states and the diffusion circuit

only amplifies inverted states, the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 states are amplified while the remaining state

amplitudes are attenuated. The 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 and 𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖 stages are then iterated over m times to

maximize the target amplitudes.

79

6.2.4 Quantum State Permutation

Our modified design of Grover’s algorithm amplifies the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 states, and a

permutation step is added to assign the amplified amplitudes to the target basis states in the output

state |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩. Similar to our oracle implementation, the permutation step consists of cascaded

mutually exclusive single permutation operations, as seen in Fig. 36. The individual permutation

step swaps two selected states based on a static index I and a dynamic input pattern 𝑃𝑃𝑖𝑖, where 𝑃𝑃𝑖𝑖 ∈

𝑃𝑃 = �𝑃𝑃0,𝑃𝑃1, … ,𝑃𝑃𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝−1�. As each individual permutation step only swaps a single state with

another state, a total of 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 permutation steps are needed to permute each high state with one

target basis state. Here, each permutation step, denoted 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋, swaps the state in |𝑖𝑖⟩ with the

state located at 𝑃𝑃𝑖𝑖. In other words, 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝0 means that state |𝜓𝜓0⟩ is swapped with the first index

of P, i.e., 𝑃𝑃0, which can be any state in |𝜓𝜓2⟩. This is then followed by the second state |1⟩ with the

second pattern in P, i.e., 𝑃𝑃1, and so on until the last state 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 − 1 is swapped with the last

pattern in P, i.e., 𝑃𝑃𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝−1, as shown in Fig. 36(f) and described by (44).

𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 = 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝−1
∙ … ∙ 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋 ∙ … ∙ 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝0

(44)
𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋 = 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋

𝑜𝑜𝑜𝑜𝑔𝑔𝑔𝑔𝑏𝑏𝑝𝑝 𝑑𝑑𝑏𝑏𝐻𝐻𝑔𝑔 ∙ 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋
𝑑𝑑𝑟𝑟𝐻𝐻𝑝𝑝 ∙ 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋

𝑑𝑑𝑝𝑝𝑜𝑜𝑝𝑝𝑏𝑏𝑜𝑜|𝑆𝑆𝜋𝜋⟩ ∙ 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋
𝑑𝑑𝑟𝑟𝐻𝐻𝑝𝑝 ∙ 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋

𝑑𝑑𝑝𝑝𝑜𝑜𝑝𝑝𝑏𝑏𝑜𝑜|𝑖𝑖⟩

Once all 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 permutations are performed, the output state |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ will have high amplitudes

only in the desired states. The quantum circuit that performs the individual permutation operation

consists of five consecutive steps as shown in Fig. 36(d) and described by (44).

80

(a) Detect |𝑖𝑖⟩ and toggle flag
ancilla operation 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋

𝑑𝑑𝑝𝑝𝑜𝑜𝑝𝑝𝑏𝑏𝑜𝑜|𝑖𝑖⟩
(b) Swap operation 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋

𝑑𝑑𝑟𝑟𝐻𝐻𝑝𝑝
(c) Detect 𝑃𝑃𝑖𝑖 and toggle flag ancilla

operation 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋
𝑑𝑑𝑝𝑝𝑜𝑜𝑝𝑝𝑏𝑏𝑜𝑜|𝑆𝑆𝜋𝜋⟩

(d) Permutation circuit 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋 for a single pattern

(e) Detailed permutation circuit 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝𝜋𝜋 for a single pattern

81

(f) Permutation circuit 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 for multiple patterns

Fig. 36: Permutation circuits for multi-pattern Quantum Grover’s Search.

The first step, shown in Fig. 36(a), detects the index at |𝑖𝑖⟩ and toggles (sets) the flag ancilla

qubit to |1⟩ whenever �𝜓𝜓2𝜋𝜋� = |𝑖𝑖⟩, but leaves it unchanged at |0⟩ for all other states of �𝜓𝜓2𝜋𝜋�. This

singles out the desired coefficient to swap in �𝜓𝜓2𝜋𝜋� and allows it to be manipulated without

affecting the other coefficients in �𝜓𝜓2𝜋𝜋�. The second step, shown in Fig. 36(b), is labeled as the

swap operation and swaps the desired flagged coefficient at |𝑖𝑖⟩ to the correct index of |𝑃𝑃𝑖𝑖⟩. To do

this, X gates are applied only when the ancilla qubit is flagged to |1⟩ and |𝑖𝑖⟩ ⊕ |𝑃𝑃𝑖𝑖⟩ = |1⟩. This

will swap the coefficient value at |𝑖𝑖⟩ with that at |𝑃𝑃𝑖𝑖⟩ leaving the flagged coefficient at the right

index, while the ancilla qubit remains flagged to |1⟩. The third step, shown in Fig. 36(c), is similar

to the first step where it detects the index at |𝑃𝑃𝑖𝑖⟩ and toggles the flag ancilla qubit. However, instead

of flagging the ancilla qubit when �𝜓𝜓2𝜋𝜋� = |𝑖𝑖⟩, this step toggles (resets) the flag on the ancilla qubit

when �𝜓𝜓2𝜋𝜋� = |𝑃𝑃𝑖𝑖⟩. At this point, the original flagged coefficient that was at index |𝑖𝑖⟩ in �𝜓𝜓2𝜋𝜋� has

been swapped to index |𝑃𝑃𝑖𝑖⟩, and the coefficient at index |𝑃𝑃𝑖𝑖⟩ has yet to be swapped back. In steps

four and five, we swap back the coefficient at |𝑃𝑃𝑖𝑖⟩ by applying an additional swap operation (step

82

four) and an additional detect operation (step five). Step five restores the flag ancilla qubit to its

initial ground state |0⟩. The circuit is shown in its entirety in Fig. 36(e). This permutation circuit

allows for a more generalized and flexible design, as the oracle/diffusion circuit only needs to

amplify the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 and the permutation circuit can dynamically swap the necessary states.

6.2.5 Hardware Architectures for Emulating Quantum Grover’s Search

For hardware implementation of the proposed multi-pattern quantum Grover’s algorithm, our

objective was to derive space-efficient emulation architectures while maintaining a high level of

accuracy and throughput. High accuracy was achieved by using single-precision floating-point

representations to model qubits and quantum operations. The complex coefficients describing

qubits and quantum gates are represented using 64 bits, with 32 bits for the real and imaginary

components respectively.

To achieve our goals of space-efficiency and high throughput, we conducted a thorough

analysis of each stage of our proposed modified Grover’s algorithm. The first stage of the proposed

algorithm is qubit initialization and normalization, see Fig. 34. This was realized efficiently and

simply on classical hardware by initializing an array of ones, and can also be achieved with the

equivalent quantum circuit 𝐻𝐻⨂𝑖𝑖. To implement the second stage 𝑈𝑈𝐴𝐴, shown in Fig. 34, we used

the stream-based CMAC emulation approach, whose architecture is presented in Fig. 25. The

emulator determines the output quantum state |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ given an input state |𝜓𝜓𝑖𝑖𝑖𝑖⟩ and the unitary

operation of the quantum algorithm 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴, where 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑈𝑈𝐴𝐴 for the case of Grover’s algorithm.

The inputs are streamed in and stored in buffers, the outputs are streamed out from an output buffer,

and the dataflow architecture is fully pipelined.

The emulation architecture leverages well-known multiply-and-accumulate techniques. An

efficient complex multiply-and-accumulate (CMAC) unit is designed to perform complex vector-

83

matrix and matrix-matrix multiplications. The number of CMAC instances that the emulator

architecture uses can be varied from 1 to N, as a trade-off between circuit area and speed.

Additionally, irrespective of the number of operations in the algorithm that is being modeled, the

architecture of the CMAC remains fixed. In other words, a single CMAC will always have the

same number of arithmetic units, allowing the use of the same number of CMAC unit(s) with

increasing circuit size. This ensures a highly scalable and space-efficient design. This emulation

model is also generalized and capable of emulating any quantum algorithm that can be reduced to

a single unitary transformation, i.e., the algorithm matrix can be pre-computed and stored on a host

machine and streamed into the emulator during the computation. The streaming technique accounts

for algorithms such as Shor’s, whose algorithm matrix changes dynamically as the algorithm

inputs change. As a result of streaming, there is a communication latency overhead between the

host machine and emulator, but the latency is negligible compared to computation time. The

computational complexity of this emulation model is 𝑂𝑂(𝑁𝑁2). However, pre-computing the

algorithm matrix is generally challenging and can add to the complexity of the emulation,

depending on the targeted quantum algorithm. In the case of some algorithms, such as Shor’s and

Quantum Approximation Optimization Algorithm (QAOA) [57], the pre-computation could limit

the efficiency of the emulation model.

A single CMAC unit is shown in Fig. 23 and its operations are described in (20). A single

CMAC unit works on the real and imaginary elements of the input state vector and algorithm

matrix, performing four additions and four multiplications in total. Using this CMAC architecture,

we store only the quantum state vectors and use fast input streams for the algorithm matrix 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴.

This technique allows the emulation of a much higher number of qubits than existing emulator

designs.

84

The final operation of the algorithm is 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝, illustrated in Fig. 34. 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 is performed

in two stages, both of which involve permuting the coefficients in the quantum state vector |𝜓𝜓2⟩

to produce the output quantum state vector |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩. In the first permutation stage, shown in Fig.

37(a), the output vector |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ is populated with the low coefficient value located at index

𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 of the |𝜓𝜓2⟩ vector. In the second stage of permutation, shown in Fig. 37(b), the amplified

indices (0 to 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 − 1) in |𝜓𝜓2⟩ are driven to the target indices in |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ based on P.

(a) First stage of permutation

(b) Second stage of permutation

Fig. 37: Stages of the permutation operation on a quantum state vector.

To perform these permutations, 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 can be emulated as a direct quantum circuit model of

quantum gates as shown in Fig. 36(e) and Fig. 36(f). We propose a more space-efficient approach

for emulation using classical methods like index scheduling, since quantum permutation is, in

essence, the swapping of basis coefficients of the quantum state. For a hardware index scheduler,

let I index values be defined as a function of j index values:

𝑖𝑖 = �
0, 𝑖𝑖𝑓𝑓 𝑗𝑗 ∈ 𝑃𝑃

 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑, 𝑅𝑅𝑞𝑞ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

The basis coefficients of the input and output states of 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 are stored at indices I and j as 𝐶𝐶𝑖𝑖
𝜓𝜓2

and 𝐶𝐶𝑗𝑗
𝜓𝜓𝑜𝑜𝑜𝑜𝑡𝑡 respectively:

85

𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜(𝑗𝑗) = 𝐶𝐶𝑗𝑗
𝜓𝜓𝑜𝑜𝑜𝑜𝑡𝑡

𝜓𝜓2(𝑖𝑖) = 𝐶𝐶𝑖𝑖
𝜓𝜓2

The quantum input and output states of 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝, which are |𝜓𝜓2⟩ and |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩, respectively, are

defined by the following expressions:

|𝜓𝜓2⟩ = �𝐶𝐶𝑖𝑖
𝜓𝜓2

𝑁𝑁−1

𝑖𝑖=0

|𝑖𝑖⟩

|𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ = �𝐶𝐶𝑗𝑗
𝜓𝜓𝑜𝑜𝑜𝑜𝑡𝑡

𝑁𝑁−1

𝑗𝑗=0

|𝑗𝑗⟩

The permutation operation may then be described as:

𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜(𝑗𝑗) = 𝜓𝜓2(𝑖𝑖) (45)

Fig. 38: Hardware index scheduler modeling quantum permutation for Grover’s search.

Based upon the above discussions and mathematical model, we design an efficient hardware

index scheduler to model the quantum permutation, 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝. The scheduler hardware architecture

is shown in Fig. 38. A mod-N counter generates the j index values. The set of I index values are

calculated based on comparisons of each generated j index with the target patterns

�𝑃𝑃0,𝑃𝑃1, … ,𝑃𝑃𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝−1�. The outputs of the comparisons are OR-ed and connected to the control

86

of a selector/multiplexer (MUX). The MUX sets the value of the I index to 0 if there is a match

between the j index and any of the patterns, or to 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 if there is no match. The generated I

and j indices are used to read from the |𝜓𝜓2⟩ vector and write into the |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ vector, as described

by (45).

6.3 Quantum Pattern Recognition

6.3.1 Methodology Overview

We present a quantum-algorithm-based methodology for dimension reduction and pattern

matching in high-resolution hyperspectral data. The methodology has two main operations, (1)

performing dimension reduction on the input data set while preserving its spatial locality as a pre-

processing technique, and (2) searching for the dynamically changing target patterns in the data

with reduced dimensionality. The first stage of operations, dimension reduction, is achieved by

applying multi-dimensional QHT (1D-, 2D-, and/or 3D-QHT) in multiple decomposition levels,

to convert the high spatial resolution of the input data to a desired, low spatial resolution. The

multi-level QHT is implemented as cascaded packet wavelet decomposition [56]. A set of input

patterns are also provided to the system and a pattern matching search is then performed on the

low spatial resolution data set using multi-pattern Grover’s search algorithm. In Grover’s

algorithm, a pattern generally means any binary string representing an integer.

Input classical data is encoded on n qubits |𝑞𝑞0⟩, 𝑞𝑞1⟩, ... , 𝑞𝑞𝑖𝑖−1⟩, see Fig. 39, representing the N

basis states of a superimposed quantum state, where 𝑛𝑛 = ⌈log2 𝑁𝑁⌉. This can be achieved using

classical-to-quantum encoding methods as described in [16], or the C2Q methods proposed in this

work. For example, one of the methods described in [16] is pure state synthesis, i.e., the problem

of encoding data in a quantum state reduces to the problem of synthesizing the state. The

SynthesizePureState algorithm described in [16] and [44] has a complexity of 𝑂𝑂(𝑁𝑁2), which is

87

similar to the cost of processing an 𝑁𝑁 × 𝑁𝑁 image using classical methods. Therefore, the classical-

to-quantum encoding is a cost worth paying especially if the subsequent quantum algorithms

provide substantial speedup compared to the classical equivalents.

Fig. 39: Overview of methodology for pattern recognition using dimension reduction.

The input qubits, assuming the data has been encoded, undergo L decomposition levels, where

𝐿𝐿 = �1
𝑑𝑑

log2
𝑁𝑁
𝑁𝑁𝑝𝑝
�, where 𝑑𝑑 = 2 for 2D-QHT, 𝑑𝑑 = 3 for 3D-QHT, and 𝑁𝑁𝑅𝑅 is a fixed and pre-

determined number of states less than 𝑁𝑁 that represents the size of the data with reduced

dimensionality. The number of qubits needed to represent the data with reduced dimensionality

decreases to 𝑛𝑛𝐻𝐻 = ⌈log2 𝑁𝑁𝐻𝐻⌉. It is desired to perform multi-pattern quantum Grover’s search (QGS)

for a given 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 number of patterns/basis states using the 𝑛𝑛𝐻𝐻 qubits |𝑞𝑞0⟩, |𝑞𝑞1⟩, ... , �𝑞𝑞𝑖𝑖𝑝𝑝−1�,

see Fig. 39. For the pattern search, m iterations [37] of multi-pattern quantum Grover’s search

(QGS) is applied. In the next sections, the QHT and QGS circuits that will be used for this

methodology are discussed.

6.3.2 Quantum Circuits

Two variants of implementing QHT circuits (Sequential QHT and Parallel QHT) have been

discussed previously, see Figs. 31(b) and 31(c) respectively. Considering the optimized Parallel

QHT circuit variant in Fig. 31(c), we generalized the number of steps of swap gates required for

88

the permutations as a function of the number of qubits, n, the number of dimensions of the kernel,

d, and the number of qubits representing the dth dimension, 𝑛𝑛𝑑𝑑. For input and output permutations,

the number of steps, or circuit depth is given by (46) and (47) respectively. The circuit depth for

d-dimension Haar operation is always 1 since the circuit is one level of Hadamard gate(s).

Therefore, total circuit depth for multi-level, multi-dimensional QHT, taking into account the

number of levels of decomposition, L, is given by (48).

 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑆𝑆𝜋𝜋𝑛𝑛 = (𝑛𝑛 − 𝑛𝑛𝑑𝑑) − (𝑑𝑑 − 1)

(46)

𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑆𝑆𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑛𝑛 − 𝑛𝑛𝑑𝑑

(47)

𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑄𝑄𝐻𝐻𝑄𝑄 = �𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ

𝑆𝑆𝜋𝜋𝑛𝑛 + 1 + 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑆𝑆𝑜𝑜𝑜𝑜𝑡𝑡 � ∙ 𝐿𝐿

 = (2(𝑛𝑛 − 𝑑𝑑 + 1) − 𝑛𝑛𝑑𝑑) ∙ 𝐿𝐿
(48)

For dynamic multi-pattern Grover’s search, we extended the conventional single-pattern

Grover’s search algorithm by modifying the phase inversion stage of the algorithm. Overview of

the methodology for this process is shown in Fig. 34, where |𝜓𝜓𝑖𝑖𝑖𝑖⟩ is the output from 2D-QHT or

3D-QHT, P is the list of patterns to be searched for, and S is a series of indexes ranging from |0⟩

to �𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 − 1�. The process to find the circuit depth for multi-pattern Grover’s search algorithm

can be separated into the four separate stages that are shown in Fig. 34, and is described in (49)

where 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑄𝑄𝐴𝐴𝑆𝑆 is the number of time steps or circuit depth of Grover’s algorithm and m is the amount

of times 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 and 𝑈𝑈𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖 stages, see Fig. 34, are repeated.

𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑄𝑄𝐴𝐴𝑆𝑆 = 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ𝐻𝐻 + 𝑚𝑚�𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 + 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖� + 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 (49)

In the 𝐻𝐻⨂𝑖𝑖 stage, the depth is simply 1, i.e., 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ𝐻𝐻 = 1, as one H gate is applied to each qubit.

This can be done in one time step as each H operation is independent from each other. In the phase

inversion stage of Grover’s algorithm, oracle circuits [58] are generally implemented using a cZ

89

gate, and multiple X gates. To make the pattern search dynamic, we proposed using cX or

controlled X-gates, with the index at S acting as the controlling qubits. This modified 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 circuit

for single-pattern Grover’s search is shown in Fig. 35(a), where the input quantum state, formed

by qubits |𝑞𝑞0⟩, 𝑞𝑞1⟩, ... , 𝑞𝑞𝑖𝑖−1⟩, is in equal superposition of its basis states after applying an H gate

to each qubit as shown by the 𝐻𝐻⨂𝑖𝑖 block in Fig. 34. The X-gates controlled by the search pattern

dynamically changes the basis state that the oracle is searching for. The use of cX-gates also allows

us to generalize the algorithm for multi-pattern search. Fig. 35(b) shows the proposed oracle for

dynamic multi-pattern, dynamic Grover’s search. To search for multiple patterns, 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 single-

pattern oracle circuits must be cascaded, with each oracle circuit controlled by the corresponding

index qubits as described by:

𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 = 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝𝑁𝑁𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝−1 ∙ … ∙ 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝𝜋𝜋 ∙ … ∙ 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝0 (50)

In the single pattern oracle circuit, see Fig. 35(a), the cX gates operate independently from each

other as each cX gate operates on a qubit pair with no overlap. From this, the depth of the single

pattern oracle circuit is 3 with a cX step followed by a 𝑐𝑐𝑖𝑖−1𝑍𝑍 step and lastly an additional cX step.

The depth for the multi-pattern circuit is simply 3 × 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 as each pattern has its own single

pattern circuit as shown in Fig. 35(b). The total depth of the 𝑈𝑈𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 , 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ𝑜𝑜𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑝𝑝 = 3 × 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑.

For the next stage, i.e., inversion about mean, the circuit we are using is identical to the

traditional Grover’s algorithm inversion about mean circuit [58]. Additionally, just like in

traditional Grover’s algorithm, the phase inversion and inversion about mean circuits are iterated

m times as described in (10). The depth of the inversion about mean, 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖 = 5 . The circuit

first applies an H gate to each qubit followed by an X gate again to each qubit, then there is a single

𝑐𝑐𝑖𝑖−1𝑍𝑍 gate which is followed again by an X and an H gate applied to each qubit, resulting in a

90

total of 5 time-steps. This method amplifies the first 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 states, so a permutation stage

dependent on the pattern being searched for is needed.

The permutation circuit has five sub circuits, see Fig. 36, in which the detect and toggle circuits

have the same depth. The detect and toggle circuits each has a depth of 3 similar to the single

pattern oracle circuit as the cX gates operate independently from each other on qubit pairs with no

overlap. In the case of the swap circuits, each qubit has a 𝑐𝑐𝑐𝑐′𝑐𝑐𝑐𝑐 and 𝑐𝑐𝑐𝑐𝑐𝑐′𝑐𝑐 gate. These gates are

mutually exclusive because if one gate is applied the other gate is guaranteed to not be applied due

to the control qubits. However, the cX gates between each qubit are not mutually exclusive as they

all depend on using the ancillary qubit. This results in a circuit depth of n. For multi-pattern cases

the circuit depth is again multiplied by 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 similar to the oracle circuit. Combining

everything together gives the following circuit depth for the 𝑈𝑈𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 stage,

𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑜𝑜𝑜𝑜𝑝𝑝 = (9 + 2𝑛𝑛) × 𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 (51)

Substituting in all four of the depth equations into (49) results in the final QGS circuit depth given

in (52).

𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑄𝑄𝐴𝐴𝑆𝑆 = 1 + 𝑚𝑚�3𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 + 5� + (9 + 2𝑛𝑛)𝑁𝑁𝑝𝑝𝐻𝐻𝑜𝑜𝑜𝑜𝑝𝑝𝐻𝐻𝑖𝑖𝑑𝑑 (52)

Using the proposed methodology and quantum circuits of QHT and QGS, it is possible to

achieve polynomial speedup over classical methods and techniques. The best known classical

search algorithm has complexity of 𝑂𝑂(𝑁𝑁) [5] [37], while QGS provides quadratic speedup with

complexity of 𝑂𝑂�√𝑁𝑁� [5] [37]. Applying dimension reduction using QHT reduces the state space

for Grover’s search from 𝑁𝑁 to 𝑁𝑁𝐻𝐻, thereby improving the complexity to 𝑂𝑂��𝑁𝑁𝐻𝐻�, where 𝑁𝑁𝐻𝐻 = 𝑁𝑁
2𝑑𝑑𝑑𝑑

,

where d is the number of data dimensions. Moreover, the use of QHT compared to a classical

91

method such as DWT also improves the complexity from 𝑂𝑂(𝑁𝑁) to 𝑂𝑂(log2 𝑁𝑁) because of encoding

the classical data as state coefficients/amplitudes [16].

6.3.3 Considerations for Practical Quantum Pattern Recognition

In practical implementation of quantum circuits, decoherence [11] plays an important part and

is a critical consideration in the design of quantum computers. Decoherence is the noise in quantum

circuits that disrupts the desired evolution of the quantum state. For any quantum circuit, the

duration of the longest possible quantum computation is the ratio of the system decoherence time,

i.e., the total time the system remains quantum-mechanically coherent, to the time taken for basic

two-qubit unitary transformations [11]. Estimates of the total number of operations possible on

different technologies of quantum computers such as nuclear spin, ion trap, quantum dot, etc., are

given in [11]. For example, an ion trap quantum computer has a decoherence time of around 10−1

seconds and a gate operation time of 10−14 seconds, and can therefore perform up to 1013

operations [11]. From our circuit analysis in previous sections, 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ
𝑄𝑄𝐻𝐻𝑄𝑄 and 𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑜𝑜ℎ

𝑄𝑄𝐴𝐴𝑆𝑆 can be used

along with the technology gate operation time to determine the practical implementation of the

proposed circuits.

Fidelity of quantum gates is another important practical consideration. In quantum information

theory, fidelity is used to measure how close two quantum states are. It is the probability that one

state will pass a test and identify as the other [11]. Fidelity threshold of quantum gates is dependent

on the underlying quantum technology. For example, superconducting quantum gates have a per-

step fidelity threshold of 99% [8]. On the other hand, silicon-based qubit technology have achieved

gate fidelities exceeding 99.9% [59]. Quantum gate fidelity can be improved by using additional

error-correcting qubits.

92

Chapter 7: Experimental Results and Analysis

7.1 Experimental Platforms

7.1.1 DirectStream

Fig. 40: DirectStream (DS8) system architecture.

One of the evaluation platforms used for the experimental work was DS8, a state-of-the-art

high-performance reconfigurable computing (HPRC) system provided by DirectStream. DS8 is a

platform where developers can build applications onto systems ranging from single-node compute

instances to multi-node chassis to multi-chassis racks, see Fig. 40. The DS8 system removes OS

elements and is an FPGA-only hardware architecture. This has benefits such as reduced

interconnection bottlenecks, reduced resource contention, and reduced cost and energy use,

compared to conventional CPU+FPGA architectures. A single C2 compute node of the DS8

93

system is equipped with high-end Intel-Altera Arria 10 10AX115N4F45E3SG FPGA and on-

board memory (OBM) SDRAM and SRAM modules, as shown in Fig. 40. The FPGA on-chip

resources (OCR) consist of 427,200 Adaptive Logic Modules (ALMs), 2,713 Block RAMs

(BRAMs), and 1,518 Digital Signal Processing (DSP) blocks, while the on-board memory (OBM)

consists of 4 × 8MB SRAM banks and 2 × 32GB SDRAM banks. The DS8 hardware system is

integrated with DirectStream’s programming environment, which succeeds the previous Carte-C

compiler [60]. DirectStream’s environment uses a High-Level Language (HLL) which facilitates

the development of complex, parallel, and reconfigurable codes in an efficient manner. The study

in [61] showed that Carte-C has a highly productive environment, short acquisition time, short

learning time as well as a short development time. The DS8 architecture provides a combination

of high performance, high scalability, runtime reconfiguration, and ease of use.

7.1.2 Xilinx Alveo

The second evaluation platform used for the experimental work was an HPRC system based

on Xilinx Alveo U250 Data Center Accelerator [62] connected to a host PC, see Fig. 41. The host

PC has the following configuration: 16-core, 3GHZ AMD CPU with 251GB system memory, and

uses fast Gen3 PCIe for host-to-board configuration and data communications, see Fig. 41(a). The

Alveo U250 board contains an XCU250 FPGA that uses Xilinx stacked silicon interconnect (SSI)

technology. SSI technology allows for increased density by combining 4 super logic regions

(SLRs). The deployment shell that handles device bring-up and configuration over PCIe is

contained within a static region of the FPGA. The remaining dynamic region is available for

developers to implement custom accelerators and kernels. The dynamic regions resources consist

of 1341K look-up tables (LUTs), 2,749K registers, 2000×36KB block RAMs, and 11,508 DSP

slices. In addition, the on-board memory resources consist of four 16GB 288-pin DDR4 DIMM

94

sockets populated with single rank DIMMs, see Fig. 41(a), with data transfer rates up to 2400

MegaTransfers per second.

(a) Xilinx Alveo System Architecture.

(b) Measured Execution Times on the Host and Accelerator.

(c) Timing profile for the Accelerator.

Fig. 41: Xilinx Alveo System Architecture and Timing Profile.

95

The measured execution times on the system for the host and the accelerator is shown in Fig.

41(b). The timing profile for the hardware accelerator is shown in Fig. 41(c). The time taken by

the host to perform memory allocation, setup kernel objects, kernel queues, etc. is termed as 𝑇𝑇𝑑𝑑𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝.

The time taken to program and configure the FPGA via PCIe is termed as 𝑇𝑇𝑏𝑏𝑜𝑜𝑖𝑖𝑑𝑑𝑖𝑖𝑔𝑔. The time taken

to transfer data from the host memory to on-board memory of the FPGA is termed as 𝑇𝑇𝑖𝑖𝑖𝑖, and the

time taken to transfer data from the on-board memory to the host memory is termed as 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, see

Figs. 41(b) and 41(c). The compute time spent in the kernel on the FPGA is termed as 𝑇𝑇𝑄𝑄𝑆𝑆𝐴𝐴𝐴𝐴 and

it also includes the data transfer times between the FPGA and the on-board memory, see Figs.

41(b) and 41(c). The software time is denoted as 𝑇𝑇𝑆𝑆𝑆𝑆 or 𝑇𝑇𝐶𝐶𝑆𝑆𝐶𝐶 and constitutes the total time taken

by the host (including host memory transfers) to execute the architectures, see Figs. 41(b).

7.1.3 IBM Quantum

The third platform used for experimental evaluation was IBM Quantum [63]. The IBM

Quantum is an integrated quantum computing system consisting of a number of custom

components (a) the quantum chip or processor built using superconducting qubits, (b) a cryogenic

system for consistent cold temperatures and isolation from environment, (c) high-precision control

electronics to tightly control a large number of qubits within strict parameters, and (d) classical

resources to provide secure cloud access and hybrid execution of quantum algorithms. IBM

Quantum provides quantum processors of varying architectures (e.g. Falcon, Hummingbird,

Eagle), varying scale (number of qubits), quality (quantum volume [64]), and speed (Circuit Layer

Operations per Second or CLOPs [65]). IBM Quantum also provides a python-based framework

called Qiskit [66] for programming quantum systems on the cloud, a GUI-based interface called

96

Composer for building quantum circuits graphically, and a general-purpose simulator with noise

modeling called IBM qasm [66].

For our experiments we used an open-access 15-qubit quantum processor from IBM Quantum,

called the ibmq_16_melbourne [66]. The qubits of ibmq_16_melbourne have, on average, an

operating frequency of 4.98 GHz, T1 (amplitude damping) time of 58.28 𝜇𝜇𝑠𝑠 and T2 (decoherence

time) of 62.1 𝜇𝜇𝑠𝑠. The connectivity on the device is provided by total 22 coplanar waveguide (CPW)

“bus” resonators, each of which connects two qubits. The connectivity configuration is shown in

Fig. 42(a). The colored dots indicate qubits, and the colored bars indicate CPW bus resonators.

Three different resonant frequencies are used for the bus resonators. The white bars indicate the

buses with a resonant frequency of 6.25 GHz, the grey bars indicate 6.45 GHz, and the black bars

indicate 6.65 GHz. Two of the qubits in the chip are not calibrated due to frequency instability and

crosstalk issues [66]. Each qubit has a dedicated CPW readout resonator attached (labeled as R)

for control and readout. Fig. 42(b) shows the chip layout.

(a) Connectivity configuration of the ibmq_16_melbourne processor

(b) Chip layout of the ibmq_16_melbourne processor

Fig. 42: The ibmq_16_melbourne processor connectivity and layout

97

7.2 Evaluation of Classical-to-Quantum Data Encoding

7.2.1 C2Q Method 1 Experiments

The proposed method 1 for C2Q data encoding has been evaluated using (1) MATLAB, for

simulation using noise-free qubits, (2) IBM Quantum, for noisy qubits on a real Noisy

Intermediate-Scale Quantum (NISQ) device, and (3) Xilinx Alveo, for hardware-accelerated,

noise-free emulation. In the IBM Quantum environment, simulations were performed using the

IBM qasm simulator, while real implementations were performed on the 15-qubit real quantum

processor, ibmq_16_melbourne. Synthesis of two types of target data was performed: (1) complex

randomized data, and (2) real grayscale image data.

Table 5: Simulation and Implementation of Proposed C2Q Circuits using IBM Q.

MATLAB and IBM Quantum Results: The experimental results from MATLAB and IBM

Quantum are presented in Table 5. For complex randomized data, the circuit depths reach the

theoretical upper bounds derived earlier in section 3.2.3 as the full synthesis circuit is required.

For real image data, the gate counts and circuit depths of the circuits were reduced by at least a

factor of two, as there are no imaginary components (𝑞𝑞𝑗𝑗 = 𝜙𝜙𝑗𝑗 = 0) in the data, and thus both the

uniformly-controlled 𝑅𝑅𝑍𝑍 operations, i.e., 𝑅𝑅𝑧𝑧�𝜙𝜙𝑗𝑗� = 𝐼𝐼, and their corresponding CNOT operations

98

are eliminated. Results obtained from IBM qasm simulations of up to 14-qubit circuits were

consistent with our theoretical expectations for circuit depth, see Table 1 and Table 5. Due to

hardware constraints for the ibmq_16_melbourne device, gate counts and circuit depths were

obtained for circuits up to only 6 qubits (complex randomized data) and 8 qubits (real image data).

Several of the gates used in our proposed circuit, such as 𝐻𝐻, CNOT and 𝑅𝑅𝑦𝑦, are not physically

realizable on the ibmq_16_melbourne device and are instead replaced in a transpilation process

using a different subset of universal gates that are native to the IBM Q platform. The transpilation

step resulted in higher gate counts and circuit depths for the implementations, compared to our

theoretical expectations, see Table 1 and Table 5. For larger data sets that require a large number

of qubits, and consequently larger synthesis circuits, the system decoherence time (T2) on

ibmq_16_melbourne was exceeded, limiting implementations to only 6 qubits (complex

randomized data) and 8 qubits (real image data). For simulations and implementations on IBM Q,

the circuits were executed with 8000 shots (iterations) to measure the probability distributions of

the output states.

To verify the correctness of the proposed C2Q methodology and circuits, the encoded images

were reconstructed from the synthesized state coefficients and the fidelity of the synthesized state

was calculated. The state fidelity is a measure for the similarity of the measured output state

|𝜓𝜓𝑖𝑖𝑝𝑝𝐻𝐻𝑑𝑑𝑜𝑜𝐻𝐻𝑝𝑝𝑑𝑑⟩, observed in simulation or implementation, to the theoretical or expected state

�𝜓𝜓𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑏𝑏𝑜𝑜𝑝𝑝𝑑𝑑�. The Uhlmann-Jozsa fidelity for pure states [67] [68], given in (53), is used for our

experiments.

𝐹𝐹 = ��𝜓𝜓𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑏𝑏𝑜𝑜𝑝𝑝𝑑𝑑�𝜓𝜓𝑖𝑖𝑝𝑝𝐻𝐻𝑑𝑑𝑜𝑜𝐻𝐻𝑝𝑝𝑑𝑑��
2
 (53)

99

Fig. 43: Original and reconstructed images from synthesized quantum states.

Fig. 43 shows 16×16, 32×32, 64×64-pixel grayscale images encoded using 8-qubit, 10-qubit,

and 12-qubit synthesis circuits respectively in both MATLAB and IBM Q. The reconstructed

images from the synthesized state are also shown along with the corresponding state fidelity

between the original data and the reconstructed data. When the images were encoded as pure states

using noise-free qubits in MATLAB, the reconstructed images were identical to the original

images, i.e., 𝐹𝐹 = 100%, see Fig. 43. For simulation on realistic Noisy Intermediate Scale Quantum

(NISQ) devices, such as the ibmq_16_melbourne, the reconstructed images were partially

corrupted by device noise. The state fidelity between the original data and the reconstructed data

was 99.1644%, 96.5429%, and 94.0894% for the 16 × 16, 32 × 32, and 64×64-pixel images

respectively, see Fig. 43.

100

Hardware Emulation Results: The hardware platform used for the evaluating the proposed C2Q

architectures was the Xilinx Alveo U250 Data Center Accelerator, see Fig. 41. The Vitis Unified

Software from Xilinx [62] was used for design and hardware deployment. MATLAB R2020a was

used for data pre-processing, post-processing, and visualizations. For the purposes of comparison

and verification, a software-based emulator was also created for the proposed architectures using

C++. The Qiskit framework from IBMQ [66] was also used for implementing the proposed

quantum circuits and the QASM simulator [66] was used for simulating the circuits on an IBM

Quantum cloud-based server.

The hardware architectures for C2Q, see Fig. 12, were implemented as reconfigurable

hardware kernels, kernel_c2q and kernel_qht on the FPGA. The extraction of the 4-tuple

(𝜃𝜃,𝜑𝜑, 𝑟𝑟, 𝑞𝑞) of parameters from input dataset is performed on the host machine. The parameters and

input/output state vectors |𝜓𝜓𝑖𝑖𝑖𝑖⟩, |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ are stored on the on-board memory and transferred to the

kernel reconfigurable regions during computation. The host machine controls memory transfers

and kernel execution commands via a high-speed PCIe bus. The kernel_c2q is executed first,

which operates on the input parameters and synthesizes the input quantum state |𝜓𝜓𝑖𝑖𝑖𝑖⟩, which is

stored on the on-board memory. The input quantum state vector is then transferred to the

kernel_qht, which executes the parallel l-level 𝑑𝑑-dimensional QHT algorithm and produces output

state vector |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩, that is transferred back to on-board memory.

The OpenCL framework [69] was used for development of the kernels and host program. The

kernel architectures were fully pipelined and computation operations were implemented with 32-

bit floating-point arithmetic. RGB images with sizes ranging from 16 × 16 × 4 pixels to

32𝐾𝐾 × 32𝐾𝐾 × 4 pixels were used as input data. For these images, C2Q circuits requiring 10 to 32

qubits were emulated using the implemented emulation architectures.

101

Hardware (HW) run-time results from the conducted experiments are shown in Table 6 for the

C2Q kernel. Measurements of 𝑇𝑇𝑖𝑖𝑖𝑖, 𝑇𝑇𝑄𝑄𝑆𝑆𝐴𝐴𝐴𝐴, and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 were taken from host-controlled executions on

the FPGA, see Table 6. Data packing techniques were employed to fully utilize the host-to-FPGA

bandwidth and achieve optimal data transfer and compute times. The setup time 𝑇𝑇𝑑𝑑𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝 and

configure time 𝑇𝑇𝑏𝑏𝑜𝑜𝑖𝑖𝑑𝑑𝑖𝑖𝑔𝑔, see Fig. 41(c), were not included in the analysis to be consistent with CPU-

based experiments. The total HW run-time reported is the sum of the time taken to transfer data

from the host to the Alveo board, the time taken for emulation computations on the FPGA, and the

time taken to transfer data back to the host, i.e., 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏(HW) = 𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑄𝑄𝑆𝑆𝐴𝐴𝐴𝐴 + 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜.

Experiments using the same RGB images were repeated on the SW emulator. C2Q circuits

requiring 10 to 32 qubits were run on the software emulator. The 4-tuple (𝜃𝜃,𝜑𝜑, 𝑟𝑟, 𝑞𝑞) of input

parameters as well as the |𝜓𝜓𝑖𝑖𝑖𝑖⟩, and |𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜⟩ state vectors were stored in heap-allocated memory

after reading input data files and performing computations, respectively. Measurements of

software (SW) run-time shown in Table 6 were taken from kernel executions on a single core of

the CPU on the host machine. The total CPU run-time, denoted as 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏(SW), is the time taken to

perform the mathematical operations on the inputs and includes data transfer time between host

memory and CPU. The time taken to read the input data files is not included in the reported timings.

Table 6: Run-time results for emulation of C2Q using Xilinx Alveo.

102

For reference, the proposed quantum circuits for C2Q (method 1) were also implemented on

Qiskit and simulated using the IBM Quantum QASM simulator. Simulation results for C2Q are

shown in Table 6. Circuit execution times for up to 20-qubit circuits were measured for C2Q and

simulations of larger circuits were not possible due to memory constraints on the IBM Quantum

server machine.

The HW implementation was benchmarked using the SW implementation as a baseline. The

HW and SW run-times are presented graphically in Fig 44 for the C2Q kernels. The SW

implementation performs better than the HW up to 14-qubit circuits as the CPU and host memory

subsystem are able to take advantage of data caching. However, for larger image sizes and larger

circuit emulations, the data caching is throttled, and the HW performance improves as it is able to

take advantage of the FPGA's high bandwidth and fine-grain parallelism.

Fig. 44: C2Q emulation run-times on different platforms.

We determined two types of speedup of the HW relative to the reference SW implementation,

see Table 6 and (54). We calculated the speedup of the HW implementation relative to the SW

implementation and observed up to × 12 improvement in favor of HW for the C2Q kernel, see

Table 6. To compare the performances of the FPGA and CPU, we calculated speedup of the total

103

FPGA execution time relative to the total CPU execution time. For large input data, the FPGA

speedup relative to CPU was × 21 for the C2Q kernel. The FPGA was able to fully exploit its

parallelism by instantiating concurrent processing elements for each data point.

Speedup(𝐻𝐻𝑆𝑆/𝑆𝑆𝑆𝑆) =
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏(𝑆𝑆𝑆𝑆)
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏(𝐻𝐻𝑆𝑆)

(54)
Speedup(𝑄𝑄𝑆𝑆𝐴𝐴𝐴𝐴/𝑆𝑆𝑆𝑆) =

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏(𝑆𝑆𝑆𝑆)
𝑇𝑇𝑄𝑄𝑆𝑆𝐴𝐴𝐴𝐴

The HW implementation was also compared with circuit simulation on the QASM simulator.

The HW emulation run-times and QASM simulation times are shown in Fig 44. For C2Q, due to

the complexity of the circuits, the increase in simulation time is relatively much steeper compared

to the HW emulation time, see Fig. 44. The QASM simulator was also able to simulate up to 20-

qubit C2Q and 26-qubit QHT circuits, while HW emulation was more scalable up to 32-qubit

circuits. For 20-qubit C2Q circuits, the HW emulation achieved 5 orders of magnitude speedup

compared to the QASM simulation, see Table 6.

7.2.2 C2Q Method 2 Experiments

The following related methods were considered for implementation and comparison with our

proposed method 2 for C2Q.

IBM Quantum: There are two state initialization/preparation functions in Qiskit, i.e., initialize()

and StatePreparation(). The default function for qubit state initialization in Qiskit is initialize() .

It takes a list of state vectors and the number of qubits as inputs, and returns a state initialization

circuit. In addition to further optimizations, the circuit construction follows the methodology

proposed in [19]. There are also initial reset gates on all the qubits in the circuit. The

StatePreparation() function also follows the recursive initialization algorithm proposed in [19],

104

and includes additional optimizations such as removing zero rotations and pairs of consecutive

CNOT gates. It is similar to initialize(), but does not contain any reset gates.

Novel Enhanced Quantum Representation (NEQR): The basis encoding technique described in

[41] uses basis states to encode the position and color of pixels (8 qubits per grayscale pixel + 𝑁𝑁

qubits for position), where 𝑁𝑁 is the total number of pixels. The benefit of basis encoding is zero

fidelity [67] loss when each pixel is measured and observed. However, measuring all the pixels

makes this process slower and expensive in terms of qubit requirement compared to other encoding

methods. A potential improvement in our implementation is dynamically setting the number of

shots by re-running the circuit until all pixels are observed. Due to the higher qubit requirement,

we were not able to run this method on hardware.

Flexible Representation of Quantum Images (FRQI): The angle encoding technique described in

[42] is similar to the NEQR method, where it uses basis states to encode the position and color of

pixels (1 qubit per grayscale pixel + log𝑁𝑁 qubits for position). We implemented this method with

some modifications for encoding colored images. However, this technique is very inefficient for

colored image encoding (each color value per pixel requires 1 qubit) and demonstrated low fidelity.

Analysis of Results: The QASM simulation results are compiled in Table 7 and presented

graphically in Fig. 45, displaying the total execution time (circuit setup + circuit execution) plotted

against the number of qubits used per method. Results from implementations on the publicly

available quantum processor ibmq_manila are presented in Table 8 and shown in Fig. 46. The

results on ibmq_manila were relatively inconclusive. The 5-qubit threshold of the quantum

105

processor was insufficient to highlight any meaningful difference between the various encoding

methods. Moreover, when implementing on quantum processors, the overhead of the control

hardware, i.e., the time taken by control hardware to generate and maintain gate pulses, comprises

a large portion of the measured execution times. Therefore, it is difficult to compare and analyze

the actual circuit execution times for the hardware implementations.

However, meaningful information can be drawn from the QASM simulations. Firstly, the

results of our proposed method are consistent with the StatePreparation() method in terms of state

fidelity and execution time, see Table 7 and Fig. 45. The IBM Quantum methods are slightly faster

in execution time (𝑇𝑇𝑝𝑝𝑚𝑚𝑝𝑝𝑏𝑏) due to various additional optimizations that are not reported in literature.

However, our investigations revealed that these optimizations also add a significant overhead to

constructing the circuit, leading our proposed C2Q method 2 to be significantly faster in total

execution time, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏, see Table 7 and Fig. 45. The IBM initialize() function also includes reset

operation. It appears that IBM also includes similar undisclosed software optimizations for

initialize(), which lower simulation execution time, as shown in Table 7 and Fig. 45.

Table 7: Implementations of C2Q encoding methods on IBM QASM Simulator.

Table 8: Implementations of C2Q encoding methods on a 5-qubit quantum processor.

106

Fig. 45: Simulation times of C2Q encoding methods on IBM QASM Simulator.

Fig. 46: Hardware execution times of C2Q encoding methods on ibmq manila.

When comparing our proposed method (amplitude encoding) to NEQR (basis encoding) and

FRQI (angle encoding), our method illustrates a balance between qubit cost, execution time, and

image fidelity. While FRQI can be executed faster compared to our method, it sacrifices qubit cost

and image fidelity. Conversely, NEQR theoretically offers perfect fidelity on all measured pixels.

In practice, however, NEQR costs a significantly higher number of qubits and incurs substantially

longer execution time for the same data size (image pixels), see Table 7 and Fig. 45. Moreover,

the number of shots was insufficient for NEQR to measure all required pixels in the larger images,

leading to fidelity loss. Resolving this issue would have required increasing the number of shots

107

for this method, which would have further increased its execution time. The original and

reconstructed 64x64x3 images for the implemented C2Q methods are shown in Fig. 47.

Fig. 47: Original and reconstructed 64x64x3 pixel images for different C2Q methods: (a) original

image, (b) proposed, fidelity 81.95% (c) IBM State Initialization, 82.19% (d) IBM State
Preparation, fidelity 81.99% (e) NEQR, fidelity 63% (f) FRQI, fidelity 57.15%

7.3 Evaluation of Quantum Algorithms

7.3.1 Implementation of QFT and Grover’s search using Gate-based Emulation

We performed experiments to test the proposed gate-based multi-node emulation architectures,

see Fig. 19, using QFT and single-pattern Grover’s search as test cases. All design components

were developed using C++ on the DS8 platform. Hardware synthesis and builds were performed

using Quartus Prime Version 17.02. The results were verified with reference models developed

using Qiskit and MATLAB. For 5-qubit QFT, the design was partitioned, and hardware builds

were performed on a 4-node DS8 unit containing three compute (C2) nodes, and a high speed 80

108

Gigabit Ethernet connection node, see Fig. 40(a) and Fig. 40(b). Each C2 node is populated with

an Arria 10 FPGA, i.e., 10AX115N4F45E3SG, see Fig. 40(c). For Grover’s search one C2 node

was sufficient for the implementation of up to 5 qubits.

Table 9: 5-Qubit QFT Resource Utilization for Multi-Node
FPGA resource Node 1 Node 2 Node 3

Logic utilization (ALMs) 377,290 (88%) 369,731 (87%) 361,443 (85%)
RAM blocks 800 (29%) 792 (29%) 764 (28%)
DSP Blocks 29 (2%) 26 (2%) 40 (3%)

Table 10: Grover’s Search (Hybrid Model) Resource Utilization for Single Node

FPGA resource 3-qubit 4-qubit 5-qubit
Logic utilization (ALMs) 99,436 (23.28%) 100,404 (23.50%) 101,172 (23.68%)

RAM blocks 278 (10.24%) 280 (10.32%) 284 (10.47%)
DSP Blocks 30 (2%) 30 (2%) 30 (2%)

Table 11: Grover’s Search (Full Gate Model) Resource Utilization for Single Node
FPGA resource 3-qubit 4-qubit

Logic utilization (ALMs) 197,524 (47%) 374,021 (88%)

RAM blocks 654 (25%) 1,604 (60%)

DSP Blocks 524 (35%) 1,364 (90%)

Table 12: Operating Frequencies (MHz)
Grover’s search implementation 3-qubit 4-qubit 5-qubit

Lee et. Al. (2016) [29] 160 170 110

Proposed work 233 233 233

The resource utilization for the experiments related to QFT and Grover’s search are presented

in Tables 9 and 10 respectively. Table 9 shows the resource utilization on C2 compute nodes 1, 2,

and 3 consumed by each partition of the 5-qubit QFT model, see Fig. 19. The resources were

shared evenly between the three design partitions. The results in Table 9 show that the ALM

resources were a limiting factor for 5-qubit QFT implementation, as approximately one third of

the circuit fully consumes a single FPGA node. Low DSP utilization is achieved due to DSP

functions being constructed from ALMs, which is handled by the Quartus Prime Compiler [70].

The proposed hybrid design of Grover’s circuit had a significant reduction in resources, shown in

109

Table 10, compared to our preliminary full-gate alternative implementations, shown in Table 11.

The proposed architecture, see Fig. 21, allowed for a larger circuit such as the 5-qubit system to

be accommodated on a single node. Also, for the case of Grover’s algorithm, the benefit of using

space-time scheduling techniques in comparison to the full-gate implementation can be observed

in Tables 10, 11, and Fig. 48. Resource scheduling results in a fixed amount of DSP resources

being used as the quantum circuit grows in size. The increase in Adaptive Logic Module (ALM)

utilization is linear, see Table 10 and Fig. 48(a). This is because of the adaptive feature of ALMs

for which we directed the compiler to combine multiple functions in a single ALM for efficient

usage of resources [70]. Also, the Intel Quartus Prime Compiler automatically searches for

functions using common inputs or completely independent functions to be placed in one ALM to

make efficient use of device resources [70]. There is an exponential increase in the RAM utilization

as the number of memory blocks increases exponentially with the number of qubits n, see Fig.

48(b). For 5 qubits, the maximum resource utilization was 24%, see Table 10. Mathematically, we

can project the resource utilization for a higher number of qubits as shown in Fig. 48. It is predicted

that a system of 12 qubits would consume only 25% of the logic resources (ALMs), see Fig. 48(a).

However, due to the exponential increase in RAM resource, see Fig. 48(b), based on our

mathematical projections, the current platform can emulate Grover’s algorithm up to 17 qubits.

The proposed architecture for Grover’s search is suitable for integrating into larger quantum

circuits and implementing on hardware. Moreover, with a pipelined architecture, the emulator

achieved a consistently higher operating frequency, meaning much higher deliverable throughput

and lower emulation time. Table 12 demonstrates this improvement in comparison to previous

work [29] which was based on Altera Stratix IV EP4SGX530KF43C4 FPGA. Fig. 48(c) shows

simulation results for the 5-qubit Grover’s search implementation. The binary search pattern was

110

accurately detected by the circuit with a probability of 0.999444077. From the experimental

results, we can conclude that for quantum circuits like Grover’s search, the scalability of the design

can be significantly improved by using our proposed framework and resource scheduling

techniques. For circuits such as the QFT, we adopt multi-node, multi-chassis architectures to

implement larger scale circuits. More accurate emulation of Grover’s search can be achieved by

implementing the full quantum gate model instead of a hybrid or abstract model. To make that

feasible, a combination of the space and space-time scheduling techniques discussed here are

required.

(a) Logic (ALM) utilization for Grover’s search implementation on a single Arria 10 FPGA.

(b) RAM block utilization for Grover’s search implementation on a single Arria 10 FPGA.

111

(c) Simulation results for 5-qubit Grover’s search for detecting binary string “11111”.

Fig. 48: Experimental results for Grover’s search.

7.3.2 Implementation of QFT and Grover’s search using CMAC-based Emulation

We performed implementations of the CMAC-based emulation model, see Fig. 22, on the DS8

system using QFT and Grover’s search as the use cases. Implementations include the various

CMAC architectures, (e.g., single, N-concurrent, dual-sequential) and different CMAC

computation techniques (e.g., lookup, dynamic generation, streaming) discussed previously. All

results are collected from hardware deployments on FPGAs with complete system and memory

interface implementations on the DS platform. The hardware architectures were implemented in

High-Level Synthesis (HLS) using C++. The high-level C++ codes were built for hardware using

Quartus Prime version 17.0.2 on an Arria 10 10AX115N4F45E3SG FPGA, and the resource

utilizations and latencies were obtained from compiler reports. As a result of fully pipelining the

designs, a high operating frequency of 233 MHz was reported, resulting in high system throughput.

We first implemented the single, N-concurrent, and dual-sequential-CMAC architectures using

the lookup technique and both on-chip resources (OCR) and on-board memory (OBM)

configurations. Emulation of the QFT algorithm was performed using these implementations.

Table 13 reports the on-chip implementation results for the single-CMAC architecture. Fig. 49

presents the resource utilizations as a function of the number of qubits. From this experiment, the

ALM and DSP resource utilizations reported were constant, which was a result of using one

112

CMAC hardware unit. The BRAM units are used for on-chip storage and lookup of the algorithm

matrix/vector elements, and the BRAM resource utilization increases exponentially with the

number of qubits. An increase in emulation time with circuit size is also observed, as expected,

due to the increasing number of temporal iterations of the single CMAC unit.

Table 13: QFT Implementation Results using Single-CMAC architecture, On-chip Resources, and
Lookup

Number of qubits OCR* utilization (%) Emulation time
(sec) ALMs BRAMs DSPs

2 10.3 8.04 1.05 1.4E-6
3 10.24 8.12 1.05 1.15E-6
4 10.24 8.11 1.05 2.01E-6
5 10.27 8.18 1.05 5.37E-6
6 10.26 8.55 1.05 1.87E-5
7 10.26 10.25 1.05 7.17E-5
8 10.29 16.73 1.05 3.19E-4
9 10.31 41.28 1.05 0.0013

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518.

Fig. 49: QFT on-chip resource utilizations using single-CMAC architecture and lookup.

The implementation results of the N-concurrent-CMAC architecture are reported in Table 14 and

Fig. 50. There is a consistent increase in ALMs as the number of CMAC hardware units in this

architecture increases with the number of qubits. The Intel Quartus Prime hardware compiler

applies optimizations to maintain the constant utilizations for scarce DSP units. For example, the

113

compiler automatically searches for functions using common inputs or completely independent

functions to be placed in one ALM to make efficient use of device resources [70].

Table 14: QFT Implementation Results using N-concurrent CMAC architecture, On-chip
Resources, and Lookup

Number of qubits OCR* utilization (%) Emulation time
(sec) ALMs BRAMs DSPs

2 10.70 7.08 1.05 6.78E-7
3 10.74 7.08 1.05 7.64E-7
4 11.53 7.08 1.05 9.36E-7
5 17.10 7.08 1.05 1.28E-6
6 24.50 7.08 1.05 1.97E-6
7 39.50 7.08 1.05 3.34E-6
8 74.88 7.08 1.05 6.09E-6

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518.

Fig. 50: QFT on-chip resource utilization using N-concurrent-CMAC architecture and lookup.

Table 15: QFT Implementation Results using Dual-sequential CMAC Architecture, On-chip
Resources, and Lookup

Number of qubits OCR* utilization (%) Emulation time
(sec) ALMs BRAMs DSPs

2 12.39 8.55 2.11 7.55E-7
3 12.34 8.55 2.11 9.61E-7
4 12.36 8.63 2.11 1.79E-6
5 12.43 8.70 2.11 5.08E-6
6 12.38 8.99 2.11 1.83E-5
7 12.39 10.69 2.11 7.1E-5
8 12.37 17.18 2.11 0.0003
9 12.37 43.54 2.11 0.0011

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518.

114

We implemented the third proposed architecture, i.e., dual-sequential-CMAC, in which two

sequentially operating CMAC computations are overlapped with data write operations. Table 15

and Fig. 51 show the obtained results. The results are similar to the first architecture

implementation in which the ALM utilization increases exponentially while the remaining

resource utilization is fixed. In Fig. 52, we compare the emulation time of all three

implementations, and we observe that the N-concurrent implementation has the highest

performance. This is due to the parallel operation of the CMAC units. The trade-off for the N-

concurrent implementation is area since we were only able to emulate up to 8 qubits, while using

the single-CMAC and dual-sequential-CMAC architectures we were able to emulate up to 9 qubits.

Any larger circuit exceeds the FPGA on-chip resources allocated for storing the computation

vectors and algorithm matrix.

Fig. 51: QFT on-chip resource utilization using dual-sequential-CMAC architecture and lookup.

115

Fig. 52: Comparison of QFT emulation times using CMAC architectures with on-chip memory.

On-board memory (OBM) configurations of the proposed architectures were also implemented

to scale the emulation to a higher number of qubits. The storage of state vectors and algorithm

matrix is performed using on-board SRAM and on-board SDRAM memories respectively. We

implemented this for the single-CMAC and dual-sequential-CMAC architectures running QFT.

For the N-concurrent-CMAC architecture, an OBM configuration leads to SDRAM read/write

contention issues, which significantly degrades the performance, and it was not considered for

implementation. Table 16 shows the results from implementation of the single-CMAC architecture

with an OBM configuration. The obtained results demonstrate that the on-chip resources are

constant with increasing qubits because they are only used for the fixed number of

adders/multipliers of the single CMAC unit. Therefore, the scalability limit is determined by the

size of the on-board memory, which is being used to store the state vectors and algorithm matrix.

Using 1×32 GB SDRAM bank of a single C2 compute node, it was possible to emulate up to 16-

qubit QFT, compared to 9-qubit QFT using on-chip resources.

116

Table 16: QFT Implementation Results using Single-CMAC Architecture, On-board Memory
and Lookup.

Number of
qubits

On-chip resource* utilization (%) OBM** Utilization (bytes)
Emulation time

(sec)***
ALMs BRAM DSPs SRAM SDRAM

2 10.71 8.44 1.05 32 128 1.7E-6
3 10.71 8.44 1.05 64 512 2.0E-6
4 10.71 8.44 1.05 128 2K 3.9E-6
5 10.71 8.44 1.05 256 8K 1.1E-5
6 10.71 8.44 1.05 512 32K 3.9E-5
7 10.71 8.44 1.05 1K 128K 0.00015
8 10.71 8.44 1.05 2K 512K 0.00061
9 10.71 8.44 1.05 4K 2M 0.00241
10 10.71 8.44 1.05 8K 8M 0.00963
11 10.71 8.44 1.05 16K 32M 0.03851
12 10.71 8.44 1.05 32K 128M 0.15399
13 10.71 8.44 1.05 64K 512M 0.61586
14 10.71 8.44 1.05 128K 2G 2.36324
15 10.71 8.44 1.05 256K 8G 9.853
16 10.71 8.44 1.05 512K 32G 39.4209

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518.
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of
32GB each.

We also implemented the dual-sequential-CMAC architecture with OBM configuration, and

the results are shown in Table 17. For both OBM configurations, we observe, as expected, that the

on-chip resources (OCR) on the FPGA are fixed for emulation of a particular algorithm due to the

fixed architecture of the CMAC. Fig. 53 shows the comparison of the emulation times between

the two configurations. It can be observed that the dual-sequential-CMAC architecture performs

better in terms of emulation time. The time complexity of 𝑂𝑂(𝑁𝑁2) for single-CMAC and dual-

sequential-CMAC, see Table 4, is also reflected in these results. From our experiments, we

conclude that the proposed dual-sequential CMAC architecture provides the highest performance

in terms of emulation time when compared to other configurations. Integrating on-board memory

with that architecture enables us to emulate QFT using 16 fully entangled qubits on a single Arria

10 FPGA node with 32 GB memory, with an emulation time of 18 seconds.

117

Table 17: QFT Implementation Results using dual-sequential-CMAC Architecture, On-board
Memory, and Lookup.

Number of
qubits

On-chip resource* utilization (%) OBM** Utilization (bytes) Emulation time
(sec)*** ALMs BRAM DSPs SRAM SDRAM

2 12 8.63 2.11 32 128 7.55E-7
3 12 8.63 2.11 64 512 9.61E-7
4 12 8.63 2.11 128 2K 1.79E-6
5 12 8.63 2.11 256 8K 5.08E-6
6 12 8.63 2.11 512 32K 1.83E-5
7 12 8.63 2.11 1K 128K 7.10E-5
8 12 8.63 2.11 2K 512K 0.00028
9 12 8.63 2.11 4K 2M 0.00113

10 12 8.63 2.11 8K 8M 0.00451
11 12 8.63 2.11 16K 32M 0.018002
12 12 8.63 2.11 32K 128M 0.072006
13 12 8.63 2.11 64K 512M 0.2888021
14 12 8.63 2.11 128K 2G 1.152083
15 12 8.63 2.11 256K 8G 4.608329
16 12 8.63 2.11 512K 32G 18.4331

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518.
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB
each.

Fig. 53: Comparison of QFT emulation times using CMAC architectures with on-board memory.

118

Table 18: QFT Implementation Results using Dual-sequential-CMAC Architecture, On-board
Memory, and Dynamic Generation.

Number of
qubits

On-chip resource* utilization (%) OBM** Utilization
(bytes) Emulation time

(sec)***
ALMs BRAMs DSPs SDRAM

2 13.16 9.58 3.23 32 1.99E-6
4 13.16 9.58 3.23 128 3.02E-6
6 13.16 9.58 3.23 512 1.95E-5
8 13.16 9.58 3.23 2K 0.0003

10 13.16 9.58 3.23 8K 0.0045
12 13.16 9.58 3.23 32K 0.0720
14 13.16 9.58 3.23 128K 1.1521
16 13.16 9.58 3.23 512K 18.433
18 13.16 9.58 3.23 2M 294.93
20 13.16 9.58 3.23 8M 4718.934
22 13.16 9.58 3.23 32M 18876†
24 13.16 9.58 3.23 128M 302012†
26 13.16 9.58 3.23 512M 4832188†
28 13.16 9.58 3.23 2G 7.73E+7 †
30 13.16 9.58 3.23 8G 1.23E+9 †
32 13.16 9.58 3.23 32G 1.979E+10 †

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518.
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each.

†Results are projected using a performance estimation model.

To emulate larger QFT circuits, we perform implementation of the dual-sequential-CMAC

architecture with OBM and using the dynamic generation technique. QFT results are shown in

Table 18. Using the dynamic generation technique, the algorithm matrix elements are generated

in hardware dynamically, and the SDRAM stores only the input/output state vectors. Therefore,

up to 32-qubit emulation of QFT was possible on a single FPGA with 32 GB on-board memory,

compared to the maximum of 16 qubits using lookup. On-chip resources are slightly higher

because of the additional generation hardware units. Although QFT circuits for up to 32 qubits

were successfully built on hardware, emulation times were unrealistically large for circuits larger

than 20 qubits, and the runtimes for these circuits were estimated using an accurate model derived

from (18), (20), and (22) for the proposed pipelined architectures.

119

Table 19: Grover’s Algorithm Implementation Results using Dual-sequential-CMAC
Architecture, On-board Memory, and Streaming.

Number of
qubits

On-chip resource* utilization (%) OBM** Utilization (bytes) Emulation time
(sec)*** ALMs BRAMs DSPs SDRAM

2 11 8 1 32 2.3E-6
4 11 8 1 128 3.4E-6
6 11 8 1 512 2.0E-5
8 11 8 1 2K 2.8E-4

10 11 8 1 8K 4.5E-3
12 11 8 1 32K 7.2E-2
14 11 8 1 128K 1.15E0
16 11 8 1 512K 1.84E+1
18 11 8 1 2M 2.95E+2
20 11 8 1 8M 4.72E+3
22 11 8 1 32M 7.5E+4†
24 11 8 1 128M 1.2E+6†
26 11 8 1 512M 1.93E+7†
28 11 8 1 2G 3.09E+8†
30 11 8 1 8G 4.95E+9†
32 11 8 1 32G 7.92E+10†

*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518.
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each.
†Results are projected using a performance estimation model.

Finally, we implement the dual-sequential-CMAC architecture with OBM and use the data

streaming technique. The algorithm matrix elements are streamed in during computation and only

the state vectors require storage. As a case study for this technique, we emulated our proposed

multi-pattern Grover's search algorithm, see Fig. 34. The target patterns were set to {1 11 2 13 4

15 6 7}, where each number corresponds to the index of a target state we are searching for. Output

results demonstrated high probability amplitudes identifying the target states, and these were

verified against results obtained from software simulations in MATLAB. The hardware

implementation results are shown in Table 19. For our experimental setup, we utilized 2×32 GB

SDRAM banks to store the input and output quantum state vectors respectively, while the input

algorithm matrix elements were streamed in. This allowed emulation of a higher number of qubits,

i.e., 32. The space complexity of this architecture is 𝑂𝑂(1), as there are only two operating CMACs.

The time complexity is 𝑂𝑂(𝑁𝑁2) due to the computation of 𝑁𝑁2 elements of the algorithm matrix, see

120

Table 4. Hardware builds of up to 32-qubit circuits for Grover's algorithm were performed on a

single FPGA with 32 GB SDRAM memory. Emulation times for circuits larger than 22 qubits

were estimated using the performance model derived from (18), (20), and (22).

Fig. 54: Grover’s search algorithm emulation using dual-sequential-CMAC Architecture,
on-board memory, and streaming.

The emulation time as a function of the number of qubits is shown in Fig. 54. A sustained

operating frequency of 233 MHz was reported by the hardware compiler for these

implementations, indicating very high throughput as a result of a fully pipelined dataflow design.

The streaming technique does not require any generation hardware and therefore can be used to

emulate any quantum algorithm that is reducible to a single unitary transformation. The complexity

of the algorithm does not affect the performance of emulation. Therefore, emulation of other

algorithms would yield the same results in terms of hardware utilization and emulation time. The

reconfigurable architecture of our emulator allows improvement of the time complexity to 𝑂𝑂(𝑁𝑁)

by instantiating 𝑁𝑁 parallel instances of CMAC units for vector matrix multiplications. To emulate

a larger number of qubits using the single CMAC approach, the amount of on-chip resources,

and/or on-board memory would need to be increased. Other approaches include adopting multi-

CMAC architectures, and/or using a multi-node architecture where the design is partitioned among

121

the nodes. In other words, scaling to higher quantum circuit sizes would require using more

hardware resources such as on-chip resources (OCR), on-board memory (OBM), number of

CMACs, or the number of FPGA nodes.

7.3.3 Implementation of QHT using Kernel-based Emulation

We performed experiments to evaluate our proposed kernel-based emulation, see Fig. 26, using

QHT algorithm as a use case. Hardware architectures for emulation of 1D-QHT and 2D-QHT, see

Fig. 33, were implemented using C++ on the DS8 programming environment. Input images with

resolution of up to 1024×1024, and 256 shades of grayscale pixels, were used to test the designs.

MATLAB was used to convert the images into greyscale, generate the input vectors for DS8, and

reconstruct images from the output vectors. Synthesis and hardware builds were performed using

Quartus Prime Version 17.02 on the DS8 environment. Fig. 55(a) shows one of the input images

converted to greyscale, Fig. 55(b) is the output after a 1D-QHT operation with 1 level of

decomposition. Fig. 55(c) is the output after a 1D-QHT operation with 2 levels of decomposition

and Fig. 55(d) shows the reconstructed images after a 1D-IQHT operation was applied. Figs. 56(a)

to 56(d) show the results from repeating the experiment using the 2D-QHT and 2D-IQHT

architectures.

122

(a) Original image

(b) 1-level 1D-QHT

(c) 2-level 1D-QHT (d) Reconstructed image using 1D-IQHT

Fig. 55: Experimental results of 1D-QHT emulation using kernel-based architectures.

(a) Original image

(b) 1-level 2D-QHT

(c) 2-level 2D-QHT (d) Reconstructed image using 2D-IQHT

Fig. 56: Experimental results of 2D-QHT emulation using kernel-based architectures

123

Table 20: 1D-QHT Implementation Results on Arria 10 FPGA
Number of

pixels
Number of

qubits
Resource Utilization* (%) SDRAM**

(bytes)
Emulation
time (sec) ALMs BRAMs DSPs

16x16 8 11 8 1 4K 0.00018
32x32 10 11 8 1 16K 0.00071
64x64 12 11 8 1 64K 0.00285

128x128 14 11 8 1 256K 0.01139
256x256 16 11 8 1 1M 0.04557
512x512 18 11 8 1 4M 0.18226

1024x1024 20 11 8 1 16M 0.72905
*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518.
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each.

Table 21: 2D-QHT Implementation Results on Arria 10 FPGA
Number of

pixels
Number of

qubits
Resource Utilization* (%) SDRAM**

(bytes)
Emulation
time (sec) ALMs BRAMs DSPs

16x16 8 14 9 2 4K 0.00012
32x32 10 14 9 2 16K 0.00047
64x64 12 14 9 2 64K 0.00187

128x128 14 14 9 2 256K 0.00746
256x256 16 14 9 2 1M 0.02982
512x512 18 14 9 2 4M 0.11926

1024x1024 20 14 9 2 16M 0.47704
*Total on-chip resources: 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 427,2000,𝑁𝑁𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴 = 2,713,𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆 = 1,518.
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each.

Resource utilizations from the hardware implementations are summarized in Tables 20 and 21

for 1D and 2D respectively. The on-chip resources (ALMs, BRAMs, DSPs) are used up in

implementing the static components of the design such as counters, adders, shift operators, etc.

and hence are constant as the emulated circuit size (number of qubits) increases. The low on-chip

resource utilizations indicate that our proposed approach and emulation architecture designs are

highly space-efficient. The 1D-QHT architecture consumes lower on-chip resources than 2D-

QHT, due to its less complex kernel operations. The low resource utilizations also indicate the

flexibility of the QHT and IQHT designs for integrating with larger algorithms.

The SDRAM memory requirements for storage of the input and output images as quantum

state vectors are also reported in Tables 20 and 21. For the highest resolution image of size

1024×1024, the pixels occupy 25% of the total on-board SDRAM memory (64 GB) available on

a single DS node. The pixels of the input images are encoded as basis coefficients of a quantum

124

state. For example, to store 16×16 or 256 pixels, we need 256 complex coefficients each of which

have a real and imaginary component occupying total 2×4=8 bytes in 32-bit floating point

representation. Therefore, for storing both input and output images, 2×256×8 = 4096 bytes of

memory was required. The obtained memory usages for larger QHT circuits are consistent with

expected values.

The hardware designs on the FPGA were pipelined to ensure a constant and high operating

frequency of 233 MHz. The obtained emulation times for high resolution images are also feasible.

For a 1024×1024 image, 20 qubits were sufficient for achieving dimension reduction using 1D

and 2D QHT. From our experimental results, we observe that the emulation time increases linearly

with increase in the number of image pixels (states), as illustrated by Fig. 57. This is because a

large portion of the emulation time is dedicated to writing in and reading out the input/output state

vectors of size 𝑁𝑁 (number of pixels) hence the emulation time complexity is 𝑂𝑂(𝑁𝑁). This indicates

the benefit of using quantum encoding of data, i.e., encoding each image pixel as a basis state

coefficient in the quantum state space. Finally, the emulation times for 1D-QHT are higher than

2D-QHT because of the higher number of iterations 𝑁𝑁 2⁄ in the 1D algorithm, compared to 𝑁𝑁 4⁄

iterations in the 2D algorithm, see Algorithms A1 and A2 in the appendix.

Fig. 57: Emulation time as a function of data size (number of pixels).

125

In general, on a classical emulation platform, the emulation execution time increases with both

the spatial and temporal complexities of the quantum circuit. In other words, the emulation time

of a quantum circuit on a classical platform is generally a function of both the circuit width

(number of qubits) and depth (number of gate levels). Due to optimizations and encoding

techniques we used, the emulation time of our proposed emulation architectures is a function of

only the quantum circuit width (number of qubits), as shown by our experimental results. On state-

of-the-art superconducting NISQ devices [14] [71], the execution time is a function of only the

depth (number of gate levels) of the circuit [72]. For our proposed 1D-QHT and 2D-QHT circuits,

which are simple quantum circuits of depth 1, we estimate an execution time of 0.01ms on a typical

NISQ device processing a 7×7 qubit array with sampling frequency of 100 KHz [72]. The

estimated execution time is constant for a fixed circuit depth and variable number of qubits in the

quantum processing unit (QPU) array, i.e., the time complexity is theoretically 𝑂𝑂(1). In

comparison, the time complexity of our emulation is 𝑂𝑂(𝑁𝑁).

7.3.4 Implementation of QHT using MATLAB and IBM Quantum

The quantum circuits for sequential and parallel QHT, see Fig. 31, were evaluated on the IBM

Quantum system. Simulations were performed using the IBM qasm simulator, while real

implementations were performed on the 15-qubit real quantum processor, ibmq_16_melbourne.

For reference, noise-free simulation models of the QHT circuits were also developed and

implemented in MATLAB. The test data used were 64 × 64 × 3 RGB-images and high-resolution

1024 × 1344 × 33 multi-spectral images. Zero-padding was used to extend the number of

datapoints to powers-of-2 in each dimension for the proper operation of the QHT kernel. Fig. 58(a)

shows a 64 × 64 × 3 input image and Figs. 58(b) and (c) show the corresponding output images

after 1 level of parallel (1-stage) 3D-QHT packet decomposition performed in MATLAB and IBM

126

Q simulations, respectively. After 1-level (𝑙𝑙 = 1) 3D-QHT, the dimensions were reduced by a

factor of 1
21

= 1
2
, where 𝑙𝑙 is the number of decomposition levels. There was distortion in output

images from the IBM Q simulation, due to the statistical noise that was generated during

measurement of the output.

(a) Original 64x64 pixel RGB Images

(b) Output images from MATLAB simulations after 1-level 3D-QHT

(c) Output images from IBM Q simulations after 1-level 3D-QHT.

Fig. 58: Test RGB image data and output image results from MATLAB and IBM Q simulations.

Original multi-

spectral image in
RGB representation

Image band # 01

Image band # 15

Image band # 22 Image band # 33

Image band #01
after 2-level 3D-

QHT

Image band #15
after 2-level 3D-

QHT

Image band #22
after 2-level 3D-

QHT

Image band #33
after 2-level 3D-

QHT

Fig. 59: Test multi-spectral images and output images from MATLAB simulations.

Fig. 59 shows a 1024 × 1344 × 33 multi-spectral image in RGB representation, four of its

spectral bands, and the corresponding decomposed image bands after 2-level (𝑙𝑙 = 2) 3D-QHT

127

packet decomposition, where each dimension is reduced by a factor of 1
22

= 1
4
. The experiments

were repeated using MATLAB models for sequential (3-stage) 3D-QHT, producing consistent

results. It was not possible to implement the circuits for multi-spectral images on IBM Q due to

simulator and hardware limitations.

Table 22: Theoretical expectations and experimental results for 14-qubit 3D-QHT using IBM-Q.

128

Theoretical Expectations and Metrics:

Theoretical run-times were estimated, see Table 22, for the proposed QHT circuit variants using

real gate times of the ibmq_16_melbourne machine. The theoretical run-times in Table 22 refer to

expected run-times of the 14-qubit QHT circuits used for the test RGB images. The relative

improvement between unoptimized and optimized circuits serves as a reference point to which we

can compare the measured experimental run-times. We measured the gate times for SWAP and H

gates on the IBM-Q systems to be 𝜏𝜏𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 = 2229.33 ns and 𝜏𝜏𝐻𝐻= 53.333 ns respectively, and

calculated realistic run-times for each circuit using the time-delay expressions from (36)-(39). The

proposed optimizations provide theoretical speedups of 4.2515 and 4.1848 fold for sequential and

parallel QHT, respectively, see Table 22. Comparing the optimized parallel with the unoptimized

sequential circuit shows a 9.3695 speedup.

𝐶𝐶𝐶𝐶𝑅𝑅 =
T2

𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏𝐻𝐻𝑜𝑜𝑖𝑖−𝑜𝑜𝑖𝑖𝑖𝑖𝑝𝑝 (54)

We define circuit coherence ratio (CCR) in (54), as a metric to evaluate how coherent a given

circuit is by comparing its execution time to the system decoherence time T2. A CCR greater-than-

unity corresponds to a coherent circuit, while a CCR less-than-unity corresponds to a decoherent

circuit. The CCR is calculated for each of the proposed circuit variants, see Table 22. CCR for the

unoptimized sequential circuit is less-than-unity which indicates that the circuit violates the

decoherence time constraint. CCR for the optimized sequential circuit is greater-than-unity which

indicates that the circuit execution time is within the decoherence time constraint. Thus, the

proposed optimizations are favorable for improving coherence of the sequential QHT circuits. The

optimizations for parallel QHT also significantly improve the respective CCRs from 1.32 to 5.54,

see Table 22. We also verified the correctness and evaluated the accuracy of each circuit by

129

measuring the state fidelity as defined in (53). By comparing fidelities among the circuit variants,

see Table 22, we determined how effective the optimizations were in reducing circuit depth and

improving coherence and state-fidelity.

Table 22 also shows the simulation run-times and fidelities obtained for each of the

implemented circuit variants. Run-times were measured for QHT circuits with qubit state-

initialization (using image data) which resulted in very deep circuits. The additional time-delay

(overhead) of state-initialization circuit is much larger than the actual QHT circuit execution time.

This results in lower speedups for simulation compared to theoretical speedups that only take into

account the QHT circuit execution time.

The circuit output measurements were obtained on a 14-bit classical register using multiple

shots (samples) to minimize the statistical noise of measurements. The state fidelities were

measured from 8000-shot simulations. For QHT circuits without state-initialization, the fidelities

were above 99%. However, the circuit fidelities decreased because of the additional circuit

required for state-initialization with the image data which introduced more noise to the measured

results. Comparing the sequential (unoptimized) with parallel (optimized), the fidelity improved

from 72.21% to 72.35% for sequential QHT, and from 72.58% to 72.64% for parallel QHT.

Hardware implementations were also performed on the ibmq_16_melbourne quantum

processor and the obtained run-times and fidelities are shown in Table 22. Qubit state-initialization

with image data could not be implemented, as the resulting circuits were too large, and run-times

exceeded the device repetition and readout rate. The hardware run-times are in the range of

seconds, compared to the simulation run-times which were in milliseconds. This is due to the

unavoidable configuration overhead of the quantum processor, i.e., the time taken to generate

control pulses of the quantum gates, which is much larger than the actual circuit execution time.

130

The fidelities measured from hardware executions are also shown in Table 22. Due to high

sampling noise of the actual quantum hardware, the fidelities are lower than 55%. However, the

fidelities improve as the circuits become optimized, see Table 22 For further improving the

fidelities, quantum error correction is required before sampling the quantum circuit and forming

the probability distribution data. Given the current status of the technology/tools, it's not possible

to isolate the different types of run-time overhead, i.e., state-initialization overhead and hardware

setup/configuration overhead, in experimental studies. The simulation and hardware run-times

could consequently be incomparable. However, both experiments are useful to evaluate the effect

of optimizations on relative run-times for each experiment. Therefore, in our results we have

included the analysis of theoretical, simulation, and hardware experiments.

7.4 Evaluation of Quantum Pattern Recognition

We implemented the emulation architectures for the proposed quantum system for pattern

recognition based on dimension reduction, see Fig. 39. The kernel-based emulation was used for

multi-dimensional QHT emulation and CMAC-based emulation was employed for performing

multi-pattern QGS. 32-bit floating-point precision was used to represent the real and imaginary

components of the complex state coefficients for both emulators, and the architectures were fully

pipelined for highest throughput. High resolution single-band and multi-spectral images were used

as test data sets for the experiments. We have obtained implementation results emulating up to 32

qubits on a single FPGA node, with an operating frequency of 233 MHz.

The experimental results for the single-band images are presented in Table 23. In this

experiment, multi-level 2D-QHT dimension reduction and pattern search using QGS was

performed on single-band grayscale images of up to 64K×64K pixel size and using up to 32

emulated qubits, see Table 23. Fig. 60(a) shows an example single-band grayscale image, Fig.

131

60(b) shows the reduced image after 1 level of 2D-QHT decomposition, and Fig. 60(c) shows the

reduced image with pattern indices identifying a person in it with the help of QGS. A 10-qubit

QGS circuit was emulated to perform pattern search on the reduced image data and output the

pattern indices.

Table 23: Quantum Pattern Recognition Implementation Results using Single-spectral
Images on Arria 10 FPGA.

No. of pixels No. of
qubits

No. of
levels

OCR* utilization (%) OBM**
(bytes)

Emulation
time (sec)*** ALMs BRAMs DSPs

128x128 14 3 22 16 2 128K 1.15E0

256x256 16 4 22 16 2 512K 1.84E01

512x512 18 5 22 16 2 2M 2.95E02

1024x1024 20 6 22 16 2 8M 4.72E03

2048x2048 22 7 22 16 2 32M 7.5E04

4096x4096 24 8 22 16 2 128M 1.2E06

8192x8192 26 9 22 16 2 512M 1.93E07

16Kx16K 28 10 22 16 2 2G 3.09E08

32Kx32K 30 11 22 16 2 8G 4.95E09

64Kx64K 32 12 22 16 2 32G 7.92E10
*Total on-chip resources: NALM = 427,000, NBRAM = 2,713, NDSP = 1,518
**Total on-board memory: 2x32 GB SDRAM banks
***Operating frequency: 233 MHz

(a) Original image (b) 1-level 2D-QHT (c) Pattern identified in
reduced image using QGS

Fig. 60: Experimental results of 2D-QHT decomposition and QGS pattern recognition.

132

The FPGA resource utilization data shown in Table 23 refers to both the QHT and QGS circuit

utilizations. The number of decomposition levels for 2D-QHT is increased as the input image size

increases. This is done to keep the size of the reduced image to a fixed resolution, and therefore

the QGS circuit can perform pattern search using a fixed number of qubits. The on-chip resources

(ALMs, BRAMs, DSPs) are used for implementing the static components of the design such as

counters, adders, shift operators, etc. and hence are constant as the emulated circuit size (number

of qubits) increases. The low on-chip resource utilizations indicate that our proposed emulation

architecture designs are highly space-efficient and highly scalable. The on-board memory is used

to store the coefficients of the input and output quantum states and therefore the memory utilization

increases exponentially with the number of qubits, making the emulation highly memory bound.

The highest resolution image of size 64K×64K occupies a full 32 GB SDRAM bank. The image

pixels are encoded as the quantum state coefficients which have 32-bit real and imaginary

components and occupy 8 bytes each. A 64K×64K image contains 232 pixels and so the total

memory required to encode it is 232 × 8 bytes, or 32 GB. The two 32 GB SDRAM banks on the

FPGA node are utilized to store the input and output images respectively.

The system emulation time obtained in Table 23 is a function of the emulation times for QHT

and QGS. In previous experiments kernel-based emulation of QHT, our findings show that

execution time of the kernel-based emulator increases linearly with the data size, i.e., number of

states. As emulation times for QGS is the same due to a fixed circuit size, the overall system

emulation time increases linearly with the number of states, N, as illustrated in Fig. 61.

133

Fig. 61: System emulation time as a function of data size.

7.5 Evaluation of Quantum-to-Classical Data Decoding

To evaluate the proposed and related Q2C data decoding methods, we conducted experiments

on IBM Quantum using Qiskit for implementing the proposed quantum circuits. Simulations of

the developed circuits were performed using QASM simulator. The number of circuit samples or

shots for the experiments ranged from 1,024 to 16,384. Experimental evaluations of our proposed

QHT-based method and the QFT-based approach reported in [16] were performed. The methods

were evaluated in terms of overhead incurred and time efficiency.

7.5.1 Characterizing measurement (circuit sampling) time on IBM QASM

We characterized the circuit sampling time on the IBM QASM simulator as a function of number

of qubits and number of shots. Measurement gates were applied across qubits that are initialized

in their ground state and the number of qubits and shots were varied. The obtained execution times

of the measurement gates (circuit sampling times) from the simulator are shown in Table 24 and

Fig. 62. The measurement time increases linearly with the number of qubits for varying number

of shots, as observed in Fig. 62. Based on the linear behavior, the measurement times for odd

numbers of qubits were linearly interpolated from the datasets shown in Table 24 and Fig. 62 and

used in the overhead analysis of the proposed Q2C method.

134

Table 24: Measurement timing data on IBM QASM simulator.

Fig. 62: Measurement time as a function of number of qubits and number of shots

on IBM QASM Simulator.

7.5.2 Simulation of QFT-based Q2C

The QFT-based method for Q2C was evaluated by simulating n-qubit QFT circuits. The

number of qubits, n, was varied from 2 to 28 and the number of shots was varied from 1,024 to

16,384, see Table 25. Larger circuit simulations could not be performed due to simulator memory

135

limitations. The obtained results were consistent with our theoretical expectations. The execution

time increases exponentially with the number of qubits and this behavior is consistent for higher

number of shots. The experimental data for QFT will be used for quantitative comparison with our

proposed QHT-based Q2C method.

Table 25: Quantum Fourier Transform execution times on IBM QASM simulator

7.5.3 Simulation of QHT-based Q2C

We evaluated our proposed QHT-based method of Q2C by simulating multi-level packet and

pyramidal decomposable, 2D and 3D-QHT circuits, varying the number of qubits, n from 4 to 32.

The number of packet/pyramidal decomposition levels was varied from l to 𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑘𝑘𝑜𝑜 /𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚

𝑝𝑝𝑦𝑦𝐻𝐻

respectively, see (34), and we obtained circuit depth measurements and circuit execution times.

All data was collected for 16,384 shot simulations. The multi-level QHT circuits were highly

optimized, resulting in significantly lower circuit depths compared to QFT which is consistent

with our theoretical expectations, see Table 26. Moreover, the simplistic nature of quantum gates

in the QHT circuit such as SWAP gates, as compared to controlled phase shift gates in the QFT

[11], should theoretically incur lower execution time.

136

Table 26: Multi-level pyramidal decomposable 3D Quantum Haar Transform circuit depths
compared to QFT circuit depths.

Table 27 presents the execution timing data obtained from multi-level packet decomposable

2D-QHT simulations on IBM Quantum. For comparison, also presented in Table 27 are the n-

qubit measurement timing data, which is the execution time of only measurement gates (without

QFT or QHT) obtained from Table 24, and n-qubit QFT circuit execution timing data from Table

25. For every 𝑙𝑙𝑜𝑜ℎ-level 2D-QHT decomposition, 𝑙𝑙 = 1,2, … , 𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑘𝑘𝑜𝑜 , the QHT circuit execution

times, the reduced number of qubits k, and the corresponding k-qubit measurement times are also

shown in Table 27. From this data we calculate the total time for 𝑙𝑙𝑜𝑜ℎ-level QHT as the sum of the

2D-QHT circuit execution time and the corresponding k-qubit measurement time. In Table 27 we

also present the speedup of QHT-based total time relative to general n-qubit measurement time

(without QFT or QHT), calculated as shown in (55). Table 28 contains the same data collected

from simulation of multi-level packet decomposable 3D-QHT.

Speedup =
𝑞𝑞𝑖𝑖𝑝𝑝𝐻𝐻𝑑𝑑𝑜𝑜𝐻𝐻𝑝𝑝(𝑛𝑛)

𝑞𝑞𝑖𝑖𝑝𝑝𝐻𝐻𝑑𝑑𝑜𝑜𝐻𝐻𝑝𝑝(𝑘𝑘) + 𝑞𝑞𝑝𝑝𝑚𝑚𝑝𝑝𝑏𝑏
𝑄𝑄𝐻𝐻𝑄𝑄 =

𝑞𝑞𝑖𝑖𝑝𝑝𝐻𝐻𝑑𝑑𝑜𝑜𝐻𝐻𝑝𝑝(𝑛𝑛)
𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑏𝑏
𝑄𝑄𝐻𝐻𝑄𝑄 (𝑛𝑛, 𝑙𝑙)

 (55)

137

Table 27: Multi-level packet decomposable 2D-QHT execution times compared to QFT
simulation times on IBM QASM simulator.

Table 28: Multi-level packet decomposable 3D-QHT execution times compared to QFT
simulation times on IBM QASM simulator.

138

Table 29: Multi-level pyramidal decomposable 2D-QHT execution times compared to QFT
simulation times on IBM QASM simulator.

Table 30: Multi-level pyramidal decomposable 3D-QHT execution times compared to QFT
simulation times on IBM QASM simulator.

139

Table 29 and 30 presents the execution timing data obtained from multi-level pyramidal 2D-

QHT and 3D-QHT simulations, respectively. Similar to previous experiments, the 𝑛𝑛-qubit

measurement timing data is obtained from Table 24, and n-qubit QFT circuit execution timing data

obtained from Table 25 is also shown. For every 𝑙𝑙𝑜𝑜ℎ-level decomposition, 𝑙𝑙 = 1,2, … , 𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑦𝑦𝐻𝐻 , the

2D/3D-QHT circuit execution times, the reduced number of qubits 𝑘𝑘, and the corresponding 𝑘𝑘-

qubit measurement times are also shown in Tables 29 and 30. The total time for 𝑙𝑙𝑜𝑜ℎ-level 2D/3D-

QHT is calculated as the sum of the QHT circuit execution time and the corresponding 𝑘𝑘-qubit

measurement time. The speedup of QHT-based total time relative to general n-qubit measurement

time (without QFT or QHT) is calculated according to (55).

7.5.4 Analysis of Results

The QFT or the multi-level QHT-based methods incur overhead in the overall measurement

time due to the additional QFT or QHT circuits, respectively. Using the data obtained from our

experiments, we characterized the timing overheads of both methods. We also determined the

speedups gained by use of the proposed packet and pyramidal QHT circuits relative to the general

measurement method without QFT or QHT. For example, considering the data in Table 28, the

measurement time for a 28-qubit circuit sampled for 16,384 shots is 281.05ms. If QFT-based

sampling is applied, the equivalent 28-qubit QFT circuit adds a large overhead of 70s. Assuming

that the number of shots required is now 1,024 as a result of QFT sampling, the reduction in

measurement time from 16,384 shots to 1,024 shots, see Table 24, is much less compared to the

increased overhead due to the added 28-qubit QFT circuit, see Table 25. Therefore, the overall

effect is an increase in total execution time.

140

(a) Packet 2D-QHT

(b) Packet 3D-QHT

(c) Pyramidal 2D-QHT

(d) Pyramidal 3D-QHT

Fig. 63: Speedups of the proposed multi-level QHT based Q2C methods as a function
of number of qubits.

Using the proposed pyramidal decomposable QHT-based sampling for the case when 𝑛𝑛 = 28

and 𝑙𝑙 = 4, the number of qubits is reduced from 𝑛𝑛 = 28 to 𝑘𝑘 = 16, see Table 28. The reduced

time taken for measurement is now 155.60ms, while the additional overhead of 4-level 3D-QHT

is 1.07ms. Therefore the total time is 156.67ms, which is a 44.4% reduction relative to the time

taken (281.05ms) for measuring all 28 qubits, and equivalent to a speedup of × 1.79. For 𝑛𝑛 = 32,

the maximum number of decomposition levels 𝑙𝑙𝑖𝑖𝐻𝐻𝑚𝑚
𝑝𝑝𝑦𝑦𝐻𝐻 , is 10, and applying 10-level 3D-QHT results

in a × 8.8 speedup in measurement time. The speedups gained by the proposed QHT-based Q2C

methods relative to the general measurement is presented as a function of number of qubits in Fig.

63 for packet 2D-QHT, packet 3D-QHT, pyramidal 2D-QHT, and pyramidal 3D-QHT

141

respectively. It is worth mentioning that for a fixed level of decomposition of both packet and

pyramidal decompositions, the speedup decreases with increase in the number of qubits, see Fig.

63. This is because for large number of qubits n, the measurement times of k qubits become very

close to the n-qubit measurement times, and the overhead due to QHT becomes relatively

negligible such that the speedup asymptotically approaches unity, see (55) and Fig. 63. However,

for a fixed number of qubits the speedup increases, as expected, with increase in the number of

decomposition levels, see Fig. 63. It is also worth noting that the maximum speedup at a particular

decomposition level is always higher for 3D-QHT compared to 2D-QHT for either packet or

pyramidal which shows the efficiency of our proposed techniques for larger datasets of higher

dimensions.

142

Conclusions

Quantum computing is at its nascent stage, and it is the right time to explore all its possibilities

and potential. There are numerous challenges to quantum computing technology, and in this work,

we investigated and proposed solutions to several important quantum computing problems. We

also demonstrated how classical reconfigurable hardware such as FPGAs can be efficiently utilized

in emulating the behavior of quantum systems and algorithms. We proposed methodologies for

performing classical-to-quantum (C2Q) data encoding and quantum-to-classical (Q2C) data

decoding, and presented the corresponding optimized quantum circuits. We investigated several

quantum algorithms such as Quantum Haar Transform, Quantum Grover’s Search and proposed

circuit optimizations and extensions. A hardware-based emulation framework was developed for

investigating quantum algorithms. An OpenCL-based methodology was used to develop and

deploy emulation hardware architectures for quantum algorithms on HPRC systems. The

flexibility of the proposed emulation framework allowed us to extend algorithms with newer

capabilities, optimize algorithms, and combine algorithms to develop new applications. For

example, a novel quantum application was proposed for pattern matching using quantum

dimension reduction, that can be used in domains such as High-Energy Physics and Hyperspectral

Remote-Sensing. We also explored architectural optimizations for the proposed emulation

framework to achieve higher scalability, accuracy, and throughput, compared to existing

emulators. Future directions of this work are integrating run-time full/partial reconfiguration with

the proposed emulation framework, and developing methodologies for a multi-node (multi-FPGA)

architectures for emulation of extreme-scale quantum circuits.

143

References

[1] P. Benioff, “The computer as a physical system: A microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines,” J. Stat. Phys., vol. 22,
no. 5, pp. 563–591, May 1980, doi: 10.1007/BF01011339.

[2] R. P. Feynman, “Simulating physics with computers,” Int J Theor Phys, vol. 21, no. 6/7,
1982.

[3] D. Deutsch, “Quantum theory, the Church–Turing principle and the universal quantum
computer,” Proc. R. Soc. Lond. Math. Phys. Sci., vol. 400, no. 1818, pp. 97–117, 1985.

[4] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer,” p. 30.

[5] L. K. Grover, “A fast quantum mechanical algorithm for database search,” 1996, pp. 212–
219.

[6] S. Boixo et al., “Characterizing quantum supremacy in near-term devices,” Nat. Phys., vol.
14, no. 6, pp. 595–600, 2018.

[7] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, 2018.
[8] F. Arute et al., “Quantum supremacy using a programmable superconducting processor,”

Nature, vol. 574, no. 7779, pp. 505–510, 2019.
[9] S. Jordan, “Quantum algorithm zoo,” Retrieved June, vol. 27, p. 2013, 2011.
[10] Y. Cao et al., “Quantum chemistry in the age of quantum computing,” Chem. Rev., vol. 119,

no. 19, pp. 10856–10915, 2019.
[11] M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” 2002.
[12] L. Gomes, “Quantum computing: Both here and not here,” IEEE Spectr., vol. 55, no. 4, pp.

42–47, 2018.
[13] M. Schlosshauer, “Quantum decoherence,” Phys. Rep., vol. 831, pp. 1–57, 2019.
[14] IBMQ, “User guides.” Accessed: June. 24, 2022. [Online]. Available: https://quantum-

computing.ibm.com/docs/
[15] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: a case for variability-aware

policies for NISQ-era quantum computers,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 987–999.

[16] C. P. Williams and S. H. Clearwater, Explorations in quantum computing. Springer, 1998.
[17] C. Reedy, When will quantum computers be consumer products? Futurism. 2017.
[18] D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte

Phys. Prog. Phys., vol. 48, no. 9‐11, pp. 771–783, 2000.
[19] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum logic circuits,” in

Proceedings of the 2005 Asia and South Pacific Design Automation Conference, New York,
NY, USA, Jan. 2005, pp. 272–275. doi: 10.1145/1120725.1120847.

[20] A. Amariutei and S. Caraiman, “Parallel quantum computer simulation on the GPU,” in 15th
International Conference on System Theory, Control and Computing, Oct. 2011, pp. 1–6.

[21] J. Chen, F. Zhang, C. Huang, M. Newman, and Y. Shi, “Classical simulation of intermediate-
size quantum circuits,” ArXiv Prepr. ArXiv180501450, 2018.

[22] H. De Raedt et al., “Massively parallel quantum computer simulator, eleven years later,”
Comput. Phys. Commun., vol. 237, pp. 47–61, Apr. 2019, doi: 10.1016/j.cpc.2018.11.005.

[23] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “QuEST and high performance simulation
of quantum computers,” Sci. Rep., vol. 9, no. 1, pp. 1–11, 2019.

144

[24] D. Willsch, M. Willsch, F. Jin, K. Michielsen, and H. De Raedt, “GPU-accelerated
simulations of quantum annealing and the quantum approximate optimization algorithm,”
ArXiv210403293 Phys. Physicsquant-Ph, Apr. 2021, Accessed: June. 24, 2022. [Online].
Available: http://arxiv.org/abs/2104.03293

[25] M. Fujishima, “FPGA-based high-speed emulator of quantum computing,” in Proceedings.
2003 IEEE International Conference on Field-Programmable Technology (FPT)(IEEE Cat.
No. 03EX798), 2003, pp. 21–26.

[26] T. Häner, D. S. Steiger, M. Smelyanskiy, and M. Troyer, “High performance emulation of
quantum circuits,” in SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2016, pp. 866–874.

[27] A. U. Khalid, Z. Zilic, and K. Radecka, “FPGA emulation of quantum circuits,” in IEEE
International Conference on Computer Design: VLSI in Computers and Processors, 2004.
ICCD 2004. Proceedings., 2004, pp. 310–315.

[28] M. Khalil-Hani, Y. H. Lee, M. N. Marsono, B. Javadi, and S. K. Garg, “An accurate FPGA-
based hardware emulation on quantum fourier transform,” in Proceedings of the 13th
Australasian Symposium on Parallel and Distributed Computing (AusPDC 2015), 2015, pp.
23–30.

[29] Y. H. Lee, M. Khalil-Hani, and M. N. Marsono, “An FPGA-based quantum computing
emulation framework based on serial-parallel architecture,” Int. J. Reconfigurable Comput.,
vol. 2016, 2016.

[30] A. Silva and O. G. Zabaleta, “FPGA quantum computing emulator using high level design
tools,” in 2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE),
2017, pp. 1–6.

[31] P. A. M. Dirac, “A new notation for quantum mechanics,” in Mathematical Proceedings of
the Cambridge Philosophical Society, 1939, vol. 35, no. 3, pp. 416–418.

[32] F. L. Marquezino, R. Portugal, and F. D. Sasse, “Obtaining the Quantum Fourier Transform
from the classical FFT with QR decomposition,” J. Comput. Appl. Math., vol. 235, no. 1, pp.
74–81, Nov. 2010, doi: 10.1016/j.cam.2010.05.012.

[33] Esam El-Araby, Tarek El-Ghazawi, J. L. Moigne, and K. Gaj, “Wavelet spectral dimension
reduction of hyperspectral imagery on a reconfigurable computer,” in Proceedings. 2004
IEEE International Conference on Field- Programmable Technology (IEEE Cat.
No.04EX921), Dec. 2004, pp. 399–402. doi: 10.1109/FPT.2004.1393309.

[34] J. M. G. Wickmann, “A wavelet approach to dimension reduction and classification of
hyperspectral data,” Master’s Thesis, 2007.

[35] A. Fijany and C. P. Williams, “Quantum Wavelet Transforms: Fast Algorithms and
Complete Circuits,” in Quantum Computing and Quantum Communications, Berlin,
Heidelberg, 1999, pp. 10–33. doi: 10.1007/3-540-49208-9_2.

[36] N. Mahmud, B. Haase-Divine, A. MacGillivray, and E. El-Araby, “Quantum Dimension
Reduction for Pattern Recognition in High-Resolution Spatio-Spectral Data,” IEEE Trans.
Comput., 2020.

[37] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight Bounds on Quantum Searching,”
Fortschritte Phys., vol. 46, no. 4–5, pp. 493–505, 1998. Accessed: June 24, 2022. doi:
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P.

[38] A. Avila, A. Maron, R. Reiser, M. Pilla, and A. Yamin, “GPU-aware distributed quantum
simulation,” in Proceedings of the 29th Annual ACM Symposium on Applied Computing,
2014, pp. 860–865.

145

[39] M. Aminian, M. Saeedi, M. S. Zamani, and M. Sedighi, “FPGA-based circuit model
emulation of quantum algorithms,” in 2008 IEEE Computer Society Annual Symposium on
VLSI, 2008, pp. 399–404.

[40] M. Weigold, J. Barzen, F. Leymann, and M. Salm, “Data encoding patterns for quantum
computing,” in Proceedings of the 27th Conference on Pattern Languages of Programs,
2020, pp. 1–11.

[41] Y. Zhang, K. Lu, Y. Gao, and M. Wang, “NEQR: a novel enhanced quantum representation
of digital images,” Quantum Inf. Process., vol. 12, no. 8, pp. 2833–2860, 2013.

[42] P. Q. Le, F. Dong, and K. Hirota, “A flexible representation of quantum images for
polynomial preparation, image compression, and processing operations,” Quantum Inf.
Process., vol. 10, no. 1, pp. 63–84, 2011.

[43] S. Johri et al., “Nearest centroid classification on a trapped ion quantum computer,” Npj
Quantum Inf., vol. 7, no. 1, pp. 1–11, 2021.

[44] L. Song and C. P. Williams, “Computational synthesis of any n -qubit pure or mixed state,”
Orlando, FL, Aug. 2003, p. 195. doi: 10.1117/12.486347.

[45] M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Quantum Circuits for
General Multiqubit Gates,” Phys. Rev. Lett., vol. 93, no. 13, p. 130502, Sep. 2004, doi:
10.1103/PhysRevLett.93.130502.

[46] M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Transformation of
quantum states using uniformly controlled rotations,” ArXivquant-Ph0407010, Jul. 2004,
Accessed: June 24, 2022. [Online]. Available: http://arxiv.org/abs/quant-ph/0407010

[47] P. Niemann, R. Datta, and R. Wille, “Logic Synthesis for Quantum State Generation,” in
2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL), May 2016,
pp. 247–252. doi: 10.1109/ISMVL.2016.30.

[48] J. Watrous, “Quantum Computational Complexity,” ArXiv08043401 Quant-Ph, Apr. 2008,
Accessed: June 24, 2022. [Online]. Available: http://arxiv.org/abs/0804.3401

[49] M. Möttönen and J. J. Vartiainen, “Decompositions of general quantum gates,” Trends
Quantum Comput. Res., 2006.

[50] K. Hwang and N. Jotwani, Advanced computer architecture: parallelism, scalability,
programmability, vol. 199. McGraw-Hill New York, 1993.

[51] G. Nannicini, “An introduction to quantum computing, without the physics,” SIAM Rev., vol.
62, no. 4, pp. 936–981, 2020.

[52] K. Jacobs, Quantum measurement theory and its applications. Cambridge University Press,
2014.

[53] S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic reduction of hyperspectral
imagery using wavelet spectral analysis,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 4,
pp. 863–871, 2003.

[54] C. Van Loan, Computational frameworks for the fast Fourier transform. SIAM, 1992.
[55] P. Hoyer, “Efficient quantum transforms,” ArXiv Prepr. Quant-Ph9702028, 1997.
[56] H.-S. Li, P. Fan, H. Xia, S. Song, and X. He, “The multi-level and multi-dimensional

quantum wavelet packet transforms,” Sci. Rep., vol. 8, no. 1, pp. 1–23, 2018.
[57] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,”

ArXiv Prepr. ArXiv14114028, 2014.
[58] C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath, and C. Monroe, “Complete

3-qubit Grover search on a programmable quantum computer,” Nat. Commun., vol. 8, no. 1,
pp. 1–9, 2017.

146

[59] W. Huang et al., “Fidelity benchmarks for two-qubit gates in silicon,” Nature, vol. 569, no.
7757, pp. 532–536, 2019.

[60] E. El-Araby, T. El-Ghazawi, J. Le Moigne, and R. Irish, “Reconfigurable processing for
satellite on-board automatic cloud cover assessment,” J. Real-Time Image Process., vol. 4,
no. 3, pp. 245–259, 2009.

[61] E. El-Araby, S. G. Merchant, and T. El-Ghazawi, “Assessing productivity of high-level
design methodologies for high-performance reconfigurable computers,” in High-
Performance Computing using FPGAs, Springer, 2013, pp. 719–745.

[62] V. Kathail, “Xilinx Vitis Unified Software Platform,” in Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, New York,
NY, USA, Feb. 2020, pp. 173–174. doi: 10.1145/3373087.3375887.

[63] “IBM Quantum System One,” IBM Quantum System One, Mar. 12, 2018.
https://research.ibm.com/ibm-q/qed/index.html (Accessed June 24, 2022).

[64] M. I. and Strategy, “IBM Doubles Its Quantum Computing Power Again,” Forbes.
https://www.forbes.com/sites/moorinsights/2020/01/08/ibm-doubles-its-quantum-
computing-power-again/ (Accessed June 24, 2022).

[65] “Driving quantum performance: more qubits, higher Quantum Volume, and now a proper
measure of speed,” IBM Research Blog, Feb. 09, 2021.
https://research.ibm.com/blog/circuit-layer-operations-per-second (accessed Jan. 26, 2022).

[66] “ibmq-device-information/backends at master · Qiskit/ibmq-device-information,” GitHub.
https://github.com/Qiskit/ibmq-device-information (Accessed June 24, 2022).

[67] R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt., vol. 41, no. 12, pp. 2315–2323,
1994.

[68] A. Uhlmann, “The ‘transition probability’ in the state space of a∗-algebra,” Rep. Math. Phys.,
vol. 9, no. 2, pp. 273–279, 1976.

[69] A. Munshi, “The opencl specification,” in 2009 IEEE Hot Chips 21 Symposium (HCS), 2009,
pp. 1–314.

[70] Intel, “Intel® Stratix® 10 Logic Array Blocks and Adaptive Logic Modules User Guide.”
2020.

[71] “A Preview of Bristlecone, Google’s New Quantum Processor,” Google AI Blog.
http://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html (Accessed
June 24, 2022).

[72] B. Villalonga et al., “Establishing the quantum supremacy frontier with a 281 pflop/s
simulation,” Quantum Sci. Technol., vol. 5, no. 3, p. 034003, 2020.

147

Appendix

A1. Algorithm 1

148

A2. Algorithm 2

149

A3. Algorithm 3

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1: Introduction
	1.1 Prospect of Quantum Computing
	1.2 Challenges and Motivation
	1.3 Problem Statement
	1.4 Research Goals and Approaches
	Chapter 2: Background and Related Work
	2.1 Quantum Computing
	2.2 Quantum Algorithms
	2.3 CPU/GPU-based Software Simulators
	2.4 FPGA-based Hardware Emulators
	Chapter 3: Classical-to-Quantum Encoding
	3.1 Related Work
	3.2 Proposed Methods
	3.3 Hardware Architectures for Emulating Classical-to-Quantum Encoding
	Chapter 4: Quantum Algorithm Emulation
	4.1 Gate-based Emulation Model
	4.2 CMAC-based Emulation Model
	4.3 Kernel-based Emulation Model
	Chapter 5: Quantum-to-Classical Decoding
	5.1 General Approach
	5.2 Quantum-to-Classical Decoding Using Quantum Fourier Transform
	5.3 Quantum-to-Classical Decoding Using Quantum Haar Transform
	Chapter 6: Proposed Use Cases
	6.1 Dimension Reduction using Quantum Wavelet (Haar) Transform
	6.2 Dynamic Multi-Pattern Search using Quantum Grover’s Search
	6.3 Quantum Pattern Recognition
	Chapter 7: Experimental Results and Analysis
	7.1 Experimental Platforms
	7.2 Evaluation of Classical-to-Quantum Data Encoding
	7.3 Evaluation of Quantum Algorithms
	7.4 Evaluation of Quantum Pattern Recognition
	7.5 Evaluation of Quantum-to-Classical Data Decoding
	Conclusions
	References
	Appendix

