I2S Masters/ Doctoral Theses


All students and faculty are welcome to attend the final defense of I2S graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Ashish Adhikari

Towards assessing the security of program binaries

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Comprehensive Defense

Committee Members:

Prasad Kulkarni, Chair
Alex Bardas
Fengjun Li
Bo Luo

Abstract

Software vulnerabilities are widespread, often resulting from coding weaknesses and poor development practices. These vulnerabilities can be exploited by attackers, posing risks to confidentiality, integrity, and availability. To protect themselves, end-users of software may have an interest in knowing whether the software they purchase, and use is secure from potential attacks. Our work is motivated by this need to automatically assess and rate the security properties of binary software.

While many researchers focus on developing techniques and tools to detect and mitigate vulnerabilities in binaries, our approach is different. We aim to determine whether the software has been developed with proper care. Our hypothesis is that software created with meticulous attention to security is less likely to contain exploitable vulnerabilities. As a first step, we examined the current landscape of binary-level vulnerability detection. We categorized critical coding weaknesses in compiled programming languages and conducted a detailed survey comparing static analysis techniques and tools designed to detect these weaknesses. Additionally, we evaluated the effectiveness of open-source CWE detection tools and analyzed their challenges. To further understand their efficacy, we conducted independent assessments using standard benchmarks.

To determine whether software is carefully and securely developed, we propose several techniques. So far, we have used machine learning and deep learning methods to identify the programming language of a binary at the functional level, enabling us to handle complex cases like mixed-language binaries and we assess whether vulnerable regions in the binary are protected with appropriate security mechanisms. Additionally, we explored the feasibility of detecting secure coding practices by examining adherence to SonarQube’s security-related coding conventions.

Next, we investigate whether compiler warnings generated during binary creation are properly addressed. Furthermore, we also aim to optimize the array bounds detection in the program binary. This enhanced array bounds detection will also increase the effectiveness of detecting secure coding conventions that are related to memory safety and buffer overflow vulnerabilities.

Our ultimate goal is to combine these techniques to rate the overall security quality of a given binary software.


Bayn Schrader

Implementation and Analysis of an Efficient Dual-Beam Radar-Communications Technique

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jonathan Owen


Abstract

Fully digital arrays enable realization of dual-function radar-communications systems which generate multiple simultaneous transmit beams with different modulation structures in different spatial directions. These spatially diverse transmissions are produced by designing the individual wave forms transmitted at each antenna element that combine in the far-field to synthesize the desired modulations at the specified directions. This thesis derives a look-up table (LUT) implementation of the existing Far-Field Radiated Emissions Design (FFRED) optimization framework. This LUT implementation requires a single optimization routine for a set of desired signals, rather than the previous implementation which required pulse-to-pulse optimization, making the LUT approach more efficient. The LUT is generated by representing the waveforms transmitted by each element in the array as a sequence of beamformers, where the LUT contains beamformers based on the phase difference between the desired signal modulations. The globally optimal beamformers, in terms of power efficiency, can be realized via the Lagrange dual problem for most beam locations and powers. The Phase-Attached Radar-Communications (PARC) waveform is selected for the communications waveform alongside a Linear Frequency Modulated (LFM) waveform for the radar signal. A set of FFRED LUTs are then used to simulate a radar transmission to verify the utility of the radar system. The same LUTs are then used to estimate the communications performance of a system with varying levels of the array knowledge uncertainty.


Will Thomas

Static Analysis and Synthesis of Layered Attestation Protocols

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Comprehensive Defense

Committee Members:

Perry Alexander, Chair
Alex Bardas
Drew Davidson
Sankha Guria
Eileen Nutting

Abstract

Trust is a fundamental issue in computer security. Frequently, systems implicitly trust in other
systems, especially if configured by the same administrator. This fallacious reasoning stems from the belief
that systems starting from a known, presumably good, state can be trusted. However, this statement only
holds for boot-time behavior; most non-trivial systems change state over time, and thus runtime behavior is
an important, oft-overlooked aspect of implicit trust in system security.

To address this, attestation was developed, allowing a system to provide evidence of its runtime behavior to a
verifier. This evidence allows a verifier to make an explicit informed decision about the system’s trustworthiness.
As systems grow more complex, scalable attestation mechanisms become increasingly important. To apply
attestation to non-trivial systems, layered attestation was introduced, allowing attestation of individual
components or layers, combined into a unified report about overall system behavior. This approach enables
more granular trust assessments and facilitates attestation in complex, multi-layered architectures. With the
complexity of layered attestation, discerning whether a given protocol is sufficiently measuring a system, is
executable, or if all measurements are properly reported, becomes increasingly challenging.

In this work, we will develop a framework for the static analysis and synthesis of layered attestation protocols,
enabling more robust and adaptable attestation mechanisms for dynamic systems. A key focus will be the
static verification of protocol correctness, ensuring the protocol behaves as intended and provides reliable
evidence of the underlying system state. A type system will be added to the Copland layered attestation
protocol description language to allow basic static checks, and extended static analysis techniques will be
developed to verify more complex properties of protocols for a specific target system. Further, protocol
synthesis will be explored, enabling the automatic generation of correct-by-construction protocols tailored to
system requirements.


David Felton

Optimization and Evaluation of Physical Complementary Radar Waveforms

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Comprehensive Defense

Committee Members:

Shannon Blunt, Chair
Rachel Jarvis
Patrick McCormick
James Stiles
Zsolt Talata

Abstract

In high dynamic-range environments, matched-filter radar performance is often sidelobe-limited with correlation error being fundamentally constrained by the TB of the collective emission. To contend with the regulatory necessity of spectral containment, the gradient-based complementary-FM framework was developed to produce complementary sidelobe cancellation (CSC) after coherently combining responses from distinct pulses from within a pulse-agile emission. In contrast to most complementary subsets, which were discovered via brute force under the notion of phase-coding, these comp-FM waveform subsets achieve CSC while preserving hardware compatibility since they are FM. Although comp-FM addressed a primary limitation of complementary signals (i.e., hardware distortion), CSC hinges on the exact reconstruction of autocorrelation terms to suppress sidelobes, from which optimality is broken for Doppler shifted signals. This work introduces a Doppler-generalized comp-FM (DG-comp-FM) framework that extends the cancellation condition to account for the anticipated unambiguous Doppler span after post-summing. While this framework is developed for use within a combine-before-Doppler processing manner, it can likewise be employed to design an entire coherent processing interval (CPI) to minimize range-sidelobe modulation (RSM) within the radar point-spread-function (PSF), thereby introducing the potential for cognitive operation if sufficient scattering knowledge is available a-priori. 

Some radar systems operate with multiple emitters, as in the case of Multiple-input-multiple-output (MIMO) radar. Whereas a single emitter must contend with the self-inflicted autocorrelation sidelobes, MIMO systems must likewise contend with the cross-correlation with coincident (in time and spectrum) emissions from other emitters. As such, the determination of "orthogonal waveforms" comprises a large portion of research within the MIMO space, with a small majority now recognizing that true orthogonality is not possible for band-limited signals (albeit, with the exclusion of TDMA). The notion of complementary-FM is proposed for exploration within a MIMO context, whereby coherently combining responses can achieve CSC as well as cross-correlation cancellation for a wide Doppler space. By effectively minimizing cross-correlation terms, this enables improved channel separation on receive as well as improved estimation capability due to reduced correlation error. Proposal items include further exploration/characterization of the space, incorporating an explicit spectral.


Jigyas Sharma

SEDPD: Sampling-Enhanced Differentially Private Defense against Backdoor Poisoning Attacks of Image Classification

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Han Wang, Chair
Drew Davidson
Dongjie Wang


Abstract

Recent advancements in explainable artificial intelligence (XAI) have brought significant transparency to machine learning by providing interpretable explanations alongside model predictions. However, this transparency has also introduced vulnerabilities, enhancing adversaries’ ability for the model decision processes through explanation-guided attacks. In this paper, we propose a robust, model-agnostic defense framework to mitigate these vulnerabilities by explanations while preserving the utility of XAI. Our framework employs a multinomial sampling approach that perturbs explanation values generated by techniques such as SHAP and LIME. These perturbations ensure differential privacy (DP) bounds, disrupting adversarial attempts to embed malicious triggers while maintaining explanation quality for legitimate users. To validate our defense, we introduce a threat model tailored to image classification tasks. By applying our defense framework, we train models with pixel-sampling strategies that integrate DP guarantees, enhancing robustness against backdoor poisoning attacks with XAI. Extensive experiments on widely used datasets, such as CIFAR-10, MNIST, CIFAR-100 and Imagenette, and models, including ConvMixer and ResNet-50, show that our approach effectively mitigates explanation-guided attacks without compromising the accuracy of the model. We also test our defense performance against other backdoor attacks, which shows our defense framework can detect other type backdoor triggers very well. This work highlights the potential of DP in securing XAI systems and ensures safer deployment of machine learning models in real-world applications.


Dimple Galla

Intelligent Application for Cold Email Generation: Business Outreach

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

Cold emailing remains an effective strategy for software service companies to improve organizational reach by acquiring clients. Generic emails often fail to get a response.

This project leverages Generative AI to automate the cold email generation. This project is built with the Llama-3.1 model and a Chroma vector database that supports the semantic search of keywords in the job description that matches the project portfolio links of software service companies. The application automatically extracts the technology related job openings for Fortune 500 companies. Users can either select from these extracted job postings or manually enter URL of a job posting, after which the system generates email and sends email upon approval. Advanced techniques like Chain-of-Thought Prompting and Few-Shot Learning were applied to improve the relevance making the email more responsive. This AI driven approach improves engagement and simplifies the business development process for software service companies.


Past Defense Notices

Dates

Sai Narendra Koganti

Object Detection

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Project Defense

Committee Members:

Sumaiya Shomaji, Chair
David Johnson
Prasad Kulkarni


Abstract

This project offers a hands-on investigation of object identification utilizing the YOLO method, Python, and OpenCV. It begins by explaining the YOLO architecture, focusing on the single-stage detection process for bounding box prediction and class probability calculation. The setup phase includes library installation and model configuration, resulting in a smooth implementation procedure. Using OpenCV, the project includes preparatory processes required for object detection in images. The YOLO model is seamlessly integrated into the OpenCV framework, enabling object detection. Post-processing techniques, such as non-maximum suppression, are used to modify detection results and improve accuracy. Visualizations, such as bounding boxes and labels, are used to help interpret the discovered items. The project finishes by investigating potential expansions and optimizations, such as custom dataset training and deployment on edge devices, opening up new paths for further investigation and development. This project provides developers with the tools and knowledge they need to build effective object detection systems for a wide range of applications, from surveillance and security to autonomous vehicles and augmented reality.


Vijay Verma

Binary Segmentation of PCB Components Using U-Net Model

When & Where:


Zoom Meeting

Degree Type:

MS Project Defense

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Zijun Yao


Abstract

This project explores the adaptation of the U-Net convolutional neural network, renowned for its medical image segmentation prowess, to the analysis of Printed Circuit Boards (PCBs). By utilizing the Fine-Printed Circuit Board Image Collection (FPIC) dataset, we address key challenges in PCB inspection, such as the precise segmentation of complex components, handling class imbalances, and capturing minute details.

The U-Net model has been finely tuned with an encoding-decoding architecture, enhanced by convolutional layers, batch normalization, and dropout techniques to extract and reconstruct high-quality features from PCB images effectively. The Dice coefficient, used as the loss function, significantly improves boundary accuracy, and manages class diversity. Throughout extensive training and validation phases, the model has demonstrated superior performance metrics compared to traditional methods, making substantial advancements in automated PCB inspection.

During the rigorous training and validation stages, the U-Net model demonstrated excellent performance metrics, eclipsing traditional inspection methods. For capacitors, the model achieved a training accuracy of 95.03% and a validation accuracy of 95.92%. For resistors, training using transfer learning techniques resulted in even more remarkable performance, with training accuracy reaching 98% and validation accuracy hitting 98.23%. These metrics highlight the model's robustness and accuracy, marking a significant advancement in automated PCB inspection and suggesting the model's potential for wider industrial applications in multiclass component segmentation within complex PCB.


Ruturaj Vaidya

Exploring binary analysis techniques for security

When & Where:


Zoom

Degree Type:

PhD Dissertation Defense

Committee Members:

Prasad Kulkarni, Chair
Alex Bardas
Drew Davidson
Esam El-Araby
Michael Vitevitch

Abstract

In this dissertation our goal is to evaluate how the loss of information at binary-level affects the performance of existing compiler-level techniques in terms of both efficiency and effectiveness. Binary analysis is difficult, as most of semantic and syntactic information available at source-level gets lost during the compilation process. If the binary is stripped and/ or optimized, then it negatively affects the efficacy of binary analysis frameworks. Moreover, handwritten assembly, obfuscation, excessive indirect calls or jumps, etc. further degrade the accuracy of binary analysis. Challenges to precise binary analysis have implications on the effectiveness, accuracy, and performance, of security and program hardening techniques implemented at the binary level. While these challenges are well-known, their respective impacts on the effectiveness and performance of program hardening techniques are less well-studied.

In this dissertation, we employ classes of defense mechanisms to protect software from the most common software attacks, like buffer overflows and control flow attacks, to determine how this loss of program information at the binary-level affects the effectiveness and performance of defense mechanisms. Additionally, we aim to tackle an important problem of type recovery from binary executables that in turn help bolster the software protection mechanisms.


Jianpeng Li

BlackLitNetwork: Advancing Black Literature Discovery Through Modern Web Technologies

When & Where:


LEEP2, Room 1420

Degree Type:

MS Project Defense

Committee Members:

Drew Davidson, Chair
Sumaiya Shomaji
Han Wang


Abstract

Advancements in web technologies have significantly expanded access to diverse cultural narratives, yet black literature remains underrepresented in digital domains. The BlackLitNetwork addresses this oversight by harnessing Elasticsearch, MongoDB, React, Python, CSS, HTML, and Node.js, to enhance the discoverability and engagement with black novels. A major component of the platform is a novel generator built with Elasticsearch, which employs powerful full-text search capabilities, essential for users to navigate an extensive literary database effectively.

MongoDB supports the archives platform with a flexible data schema for managing varied literary content efficiently, while Python facilitates robust data cleaning and preprocessing to ensure data integrity and usability. The user interface, created using React, transforms Figma designs from our design team into a dynamic web presence, integrating HTML and CSS to ensure both aesthetic appeal and accessibility.

To further enhance security and manageability, we've implemented a Node.js backend. This layer acts as a middleware, managing and processing requests between our frontend and Elasticsearch. This not only secures our data interactions but also allows for request handling before querying Elasticsearch. This architecture ensures that BlackLitNetwork remains scalable and maintainable.

BlackLitNetwork also features specialized pages for podcasts, briefs, and interactive data visualizations, each designed to highlight historical, and contextual elements of black literature. These components aid in fostering a deeper understanding, establishing BlackLitNetwork as a tool for scholars. This project not only enriches the field of humanities but also promotes a broader understanding of the black literary heritage, making it a resource for researchers, educators, and readers keen on exploring the richness of black literature.


Aiden Liang

Enhancing Healthcare Resource Demand Forecasting Using Machine Learning: An Integrated Approach to Addressing Temporal Dynamics and External Influences

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Project Defense

Committee Members:

Prasad Kulkami, Chair
Fengjun Li
Zijun Yao


Abstract

This project aims to enhance predictive models for forecasting healthcare resource demand, particularly focusing on hospital bed occupancy and emergency room visits while considering external factors such as disease outbreaks and weather conditions. Utilizing a range of machine learning techniques, the research seeks to improve the accuracy and reliability of these forecasts, essential for optimizing healthcare resource management.

The project involves multiple phases, starting with the collection and preparation of historical data from public health databases and hospital records, enriched with external variables such as weather patterns and epidemiological data. Advanced feature engineering is key, transforming raw data into a machine learning-friendly format, including temporal and lag features to identify patterns and trends.

The study explores various machine learning methods, from traditional models like ARIMA to advanced techniques such as LSTM networks and GRU models, incorporating rigorous training and validation protocols to ensure robust performance. Model effectiveness is evaluated using metrics like MAE, RMSE, and MAPE, with a strong focus on model interpretability and explainability through techniques like SHAP and LIME. The project also addresses practical implementation challenges and ethical considerations, aiming to bridge academic research with practical healthcare applications. Findings are intended for dissemination through academic papers and conferences, ensuring that the models developed meet both the ethical standards and practical needs of the healthcare industry.


Thomas Atkins

Secure and Auditable Academic Collections via Hyperledger Fabric-Based Smart Contracts

When & Where:


Nichols Hall, Room 246

Degree Type:

MS Thesis Defense

Committee Members:

Drew Davidson, Chair
Fengjun Li
Bo Luo


Abstract

This paper introduces a novel approach to manage collections of artifacts through smart contract access control, rooted in on-chain role-based property-level access control. This smart contract facilitates the lifecycle of these artifacts including allowing for the creation, modification, removal, and historical auditing of the artifacts through both direct and suggested actions. This method introduces a collection object designed to store role privileges concerning state object properties. User roles are defined within an on-chain entity that maps users' signed identities to roles across different collections, enabling a single user to assume varying roles in distinct collections.

Unlike existing key-level endorsement mechanisms, this approach offers finer-grained privileges by defining them on a per-property basis, not at the key level. The outcome is a more flexible and fine-grained access control system seamlessly integrated into the smart contract itself, empowering administrators to manage access with precision and adaptability across diverse organizational contexts. This has the added benefit of allowing for the auditing of not only the history of the artifacts, but also for the permissions granted to the users. 


Theodore Harbison

Posting Passwords: How social media information can be leveraged in password guessing attacks

When & Where:


Zoom (ID: 7858648812, Pass: 348348

Degree Type:

MS Thesis Defense

Committee Members:

Hossein Saiedian, Chair
Fengjun Li
Heechul Yun


Abstract

The explosion of social media, while fostering connection, inadvertently exposes personal details that heighten password vulnerability. This thesis tackles this critical link, aiming to raise public awareness of the dangers of weak passwords and excessive online sharing. We introduce a novel password guessing algorithm, SocGuess, which capitalizes on the rich trove of information on social media profiles.

SocGuess leverages Named Entity Recognition (NER) to identify key data points within this information, such as dates, locations, and names. To further enhance its accuracy, SocGuess is trained on the rockyou dataset, a large collection of leaked passwords. By identifying different kinds of entities within these passwords, SocGuess can calculate the probability of these entities appearing in passwords.

Armed with this knowledge, SocGuess dynamically generates password guesses in order of probability by filling these entity placeholders with the corresponding data points harvested from the target’s social media profiles. This targeted approach shows SocGuess to crack 33% more passwords than existing algorithms during experimentation, demonstrably surpassing traditional methods.


Ethan Grantz

Swarm: A Backend-Agnostic Language for Simple Distributed Programming

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Project Defense

Committee Members:

Drew Davidson, Chair
Perry Alexander
Prasad Kulkarni


Abstract

Writing algorithms for a parallel or distributed environment has always been plagued with a variety of challenges, from supervising synchronous reads and writes, to managing job queues and avoiding deadlock. While many languages have libraries or language constructs to mitigate these obstacles, very few attempt to remove those challenges entirely, and even fewer do so while divorcing the means of handling those problems from the means of parallelization or distribution. This project introduces a language called Swarm, which attempts to do just that.

Swarm is a first-class parallel/distributed programming language with modular, swappable parallel drivers. It is intended for everything from multi-threaded local computation on a single machine to large scientific computations split across many nodes in a cluster.

Swarm contains next to no explicit syntax for typical parallel logic, only containing keywords for declaring which variables should reside in shared memory, and describing what code should be parallelized. The remainder of the logic (such as waiting for the results from distributed jobs or locking shared accesses) are added in when compiling to a custom bytecode called Swarm Virtual Instructions (SVI). SVI is then executed by a virtual machine whose parallelization logic is abstracted out, such that the same SVI bytecode can be executed in any parallel/distributed environment.


Johnson Umeike

Optimizing gem5 Simulator Performance: Profiling Insights and Userspace Networking Enhancements

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Thesis Defense

Committee Members:

Mohammad Alian, Chair
Prasad Kulkarni
Heechul Yun


Abstract

Full-system simulation of computer systems is critical for capturing the complex interplay between various hardware and software components in future systems. Modeling the network subsystem is indispensable for the fidelity of full-system simulations due to the increasing importance of scale-out systems. Over the last decade, the network software stack has undergone major changes, with userspace networking stacks and data-plane networks rapidly replacing the conventional kernel network stack. Nevertheless, the current state-of-the-art architectural simulator, gem5, still employs kernel networking, which precludes realistic network application scenarios.

First, we perform a comprehensive profiling study to identify and propose architectural optimizations to accelerate a state-of-the-art architectural simulator. We choose gem5 as the representative architectural simulator, run several simulations with various configurations, perform a detailed architectural analysis of the gem5 source code on different server platforms, tune both system and architectural settings for running simulations, and discuss the future opportunities in accelerating gem5 as an important application. Our detailed profiling of gem5 reveals that its performance is extremely sensitive to the size of the L1 cache. Our experimental results show that a RISC-V core with 32KB data and instruction cache improves gem5’s simulation speed by 31%∼61% compared with a baseline core with 8KB L1 caches. Second, this work extends gem5’s networking capabilities by integrating kernel-bypass/user-space networking based on the DPDK framework, significantly enhancing network throughput and reducing latency. By enabling user-space networking, the simulator achieves a substantial 6.3× improvement in network bandwidth compared to traditional Linux software stacks. Our hardware packet generator model (EtherLoadGen) provides up to a 2.1× speedup in simulation time. Additionally, we develop a suite of networking micro-benchmarks for stress testing the host network stack, allowing for efficient evaluation of gem5’s performance. Through detailed experimental analysis, we characterize the performance differences when running the DPDK network stack on both real systems and gem5, highlighting the sensitivity of DPDK performance to various system and microarchitecture parameters.


Adam Sarhage

Design of Multi-Section Coupled Line Coupler

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

Jim Stiles, Chair
Chris Allen
Glenn Prescott


Abstract

Coupled line couplers are used as directional couplers to enable measurement of forward and reverse power in RF transmitters. These measurements provide valuable feedback to the control loops regulating transmitter power output levels. This project seeks to synthesize, simulate, build, and test a broadband, five-stage coupled line coupler with a 20 dB coupling factor. The coupler synthesis is evaluated against ideal coupler components in Keysight ADS.  Fabrication of coupled line couplers is typically accomplished with a stripline topology, but a microstrip topology is additionally evaluated. Measurements from the fabricated coupled line couplers are then compared to the Keysight ADS EM simulations, and some explanations for the differences are provided. Additionally, measurements from a commercially available broadband directional coupler are provided to show what can be accomplished with the right budget.