I2S Masters/ Doctoral Theses
All students and faculty are welcome to attend the final defense of I2S graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.
Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.
Upcoming Defense Notices
Ashish Adhikari
Towards assessing the security of program binariesWhen & Where:
Eaton Hall, Room 2001B
Degree Type:
PhD Comprehensive DefenseCommittee Members:
Prasad Kulkarni, ChairAlex Bardas
Fengjun Li
Bo Luo
Abstract
Software vulnerabilities are widespread, often resulting from coding weaknesses and poor development practices. These vulnerabilities can be exploited by attackers, posing risks to confidentiality, integrity, and availability. To protect themselves, end-users of software may have an interest in knowing whether the software they purchase, and use is secure from potential attacks. Our work is motivated by this need to automatically assess and rate the security properties of binary software.
While many researchers focus on developing techniques and tools to detect and mitigate vulnerabilities in binaries, our approach is different. We aim to determine whether the software has been developed with proper care. Our hypothesis is that software created with meticulous attention to security is less likely to contain exploitable vulnerabilities. As a first step, we examined the current landscape of binary-level vulnerability detection. We categorized critical coding weaknesses in compiled programming languages and conducted a detailed survey comparing static analysis techniques and tools designed to detect these weaknesses. Additionally, we evaluated the effectiveness of open-source CWE detection tools and analyzed their challenges. To further understand their efficacy, we conducted independent assessments using standard benchmarks.
To determine whether software is carefully and securely developed, we propose several techniques. So far, we have used machine learning and deep learning methods to identify the programming language of a binary at the functional level, enabling us to handle complex cases like mixed-language binaries and we assess whether vulnerable regions in the binary are protected with appropriate security mechanisms. Additionally, we explored the feasibility of detecting secure coding practices by examining adherence to SonarQube’s security-related coding conventions.
Next, we investigate whether compiler warnings generated during binary creation are properly addressed. Furthermore, we also aim to optimize the array bounds detection in the program binary. This enhanced array bounds detection will also increase the effectiveness of detecting secure coding conventions that are related to memory safety and buffer overflow vulnerabilities.
Our ultimate goal is to combine these techniques to rate the overall security quality of a given binary software.
Bayn Schrader
Implementation and Analysis of an Efficient Dual-Beam Radar-Communications TechniqueWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Degree Type:
MS Thesis DefenseCommittee Members:
Patrick McCormick, ChairShannon Blunt
Jonathan Owen
Abstract
Fully digital arrays enable realization of dual-function radar-communications systems which generate multiple simultaneous transmit beams with different modulation structures in different spatial directions. These spatially diverse transmissions are produced by designing the individual wave forms transmitted at each antenna element that combine in the far-field to synthesize the desired modulations at the specified directions. This thesis derives a look-up table (LUT) implementation of the existing Far-Field Radiated Emissions Design (FFRED) optimization framework. This LUT implementation requires a single optimization routine for a set of desired signals, rather than the previous implementation which required pulse-to-pulse optimization, making the LUT approach more efficient. The LUT is generated by representing the waveforms transmitted by each element in the array as a sequence of beamformers, where the LUT contains beamformers based on the phase difference between the desired signal modulations. The globally optimal beamformers, in terms of power efficiency, can be realized via the Lagrange dual problem for most beam locations and powers. The Phase-Attached Radar-Communications (PARC) waveform is selected for the communications waveform alongside a Linear Frequency Modulated (LFM) waveform for the radar signal. A set of FFRED LUTs are then used to simulate a radar transmission to verify the utility of the radar system. The same LUTs are then used to estimate the communications performance of a system with varying levels of the array knowledge uncertainty.
Will Thomas
Static Analysis and Synthesis of Layered Attestation ProtocolsWhen & Where:
Eaton Hall, Room 2001B
Degree Type:
PhD Comprehensive DefenseCommittee Members:
Perry Alexander, ChairAlex Bardas
Drew Davidson
Sankha Guria
Eileen Nutting
Abstract
Trust is a fundamental issue in computer security. Frequently, systems implicitly trust in other
systems, especially if configured by the same administrator. This fallacious reasoning stems from the belief
that systems starting from a known, presumably good, state can be trusted. However, this statement only
holds for boot-time behavior; most non-trivial systems change state over time, and thus runtime behavior is
an important, oft-overlooked aspect of implicit trust in system security.
To address this, attestation was developed, allowing a system to provide evidence of its runtime behavior to a
verifier. This evidence allows a verifier to make an explicit informed decision about the system’s trustworthiness.
As systems grow more complex, scalable attestation mechanisms become increasingly important. To apply
attestation to non-trivial systems, layered attestation was introduced, allowing attestation of individual
components or layers, combined into a unified report about overall system behavior. This approach enables
more granular trust assessments and facilitates attestation in complex, multi-layered architectures. With the
complexity of layered attestation, discerning whether a given protocol is sufficiently measuring a system, is
executable, or if all measurements are properly reported, becomes increasingly challenging.
In this work, we will develop a framework for the static analysis and synthesis of layered attestation protocols,
enabling more robust and adaptable attestation mechanisms for dynamic systems. A key focus will be the
static verification of protocol correctness, ensuring the protocol behaves as intended and provides reliable
evidence of the underlying system state. A type system will be added to the Copland layered attestation
protocol description language to allow basic static checks, and extended static analysis techniques will be
developed to verify more complex properties of protocols for a specific target system. Further, protocol
synthesis will be explored, enabling the automatic generation of correct-by-construction protocols tailored to
system requirements.
David Felton
Optimization and Evaluation of Physical Complementary Radar WaveformsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Degree Type:
PhD Comprehensive DefenseCommittee Members:
Shannon Blunt, ChairRachel Jarvis
Patrick McCormick
James Stiles
Zsolt Talata
Abstract
In high dynamic-range environments, matched-filter radar performance is often sidelobe-limited with correlation error being fundamentally constrained by the TB of the collective emission. To contend with the regulatory necessity of spectral containment, the gradient-based complementary-FM framework was developed to produce complementary sidelobe cancellation (CSC) after coherently combining responses from distinct pulses from within a pulse-agile emission. In contrast to most complementary subsets, which were discovered via brute force under the notion of phase-coding, these comp-FM waveform subsets achieve CSC while preserving hardware compatibility since they are FM. Although comp-FM addressed a primary limitation of complementary signals (i.e., hardware distortion), CSC hinges on the exact reconstruction of autocorrelation terms to suppress sidelobes, from which optimality is broken for Doppler shifted signals. This work introduces a Doppler-generalized comp-FM (DG-comp-FM) framework that extends the cancellation condition to account for the anticipated unambiguous Doppler span after post-summing. While this framework is developed for use within a combine-before-Doppler processing manner, it can likewise be employed to design an entire coherent processing interval (CPI) to minimize range-sidelobe modulation (RSM) within the radar point-spread-function (PSF), thereby introducing the potential for cognitive operation if sufficient scattering knowledge is available a-priori.
Some radar systems operate with multiple emitters, as in the case of Multiple-input-multiple-output (MIMO) radar. Whereas a single emitter must contend with the self-inflicted autocorrelation sidelobes, MIMO systems must likewise contend with the cross-correlation with coincident (in time and spectrum) emissions from other emitters. As such, the determination of "orthogonal waveforms" comprises a large portion of research within the MIMO space, with a small majority now recognizing that true orthogonality is not possible for band-limited signals (albeit, with the exclusion of TDMA). The notion of complementary-FM is proposed for exploration within a MIMO context, whereby coherently combining responses can achieve CSC as well as cross-correlation cancellation for a wide Doppler space. By effectively minimizing cross-correlation terms, this enables improved channel separation on receive as well as improved estimation capability due to reduced correlation error. Proposal items include further exploration/characterization of the space, incorporating an explicit spectral.
Jigyas Sharma
SEDPD: Sampling-Enhanced Differentially Private Defense against Backdoor Poisoning Attacks of Image ClassificationWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Degree Type:
MS Thesis DefenseCommittee Members:
Han Wang, ChairDrew Davidson
Dongjie Wang
Abstract
Recent advancements in explainable artificial intelligence (XAI) have brought significant transparency to machine learning by providing interpretable explanations alongside model predictions. However, this transparency has also introduced vulnerabilities, enhancing adversaries’ ability for the model decision processes through explanation-guided attacks. In this paper, we propose a robust, model-agnostic defense framework to mitigate these vulnerabilities by explanations while preserving the utility of XAI. Our framework employs a multinomial sampling approach that perturbs explanation values generated by techniques such as SHAP and LIME. These perturbations ensure differential privacy (DP) bounds, disrupting adversarial attempts to embed malicious triggers while maintaining explanation quality for legitimate users. To validate our defense, we introduce a threat model tailored to image classification tasks. By applying our defense framework, we train models with pixel-sampling strategies that integrate DP guarantees, enhancing robustness against backdoor poisoning attacks with XAI. Extensive experiments on widely used datasets, such as CIFAR-10, MNIST, CIFAR-100 and Imagenette, and models, including ConvMixer and ResNet-50, show that our approach effectively mitigates explanation-guided attacks without compromising the accuracy of the model. We also test our defense performance against other backdoor attacks, which shows our defense framework can detect other type backdoor triggers very well. This work highlights the potential of DP in securing XAI systems and ensures safer deployment of machine learning models in real-world applications.
Dimple Galla
Intelligent Application for Cold Email Generation: Business OutreachWhen & Where:
Eaton Hall, Room 2001B
Degree Type:
MS Project DefenseCommittee Members:
David Johnson, ChairPrasad Kulkarni
Dongjie Wang
Abstract
Cold emailing remains an effective strategy for software service companies to improve organizational reach by acquiring clients. Generic emails often fail to get a response.
This project leverages Generative AI to automate the cold email generation. This project is built with the Llama-3.1 model and a Chroma vector database that supports the semantic search of keywords in the job description that matches the project portfolio links of software service companies. The application automatically extracts the technology related job openings for Fortune 500 companies. Users can either select from these extracted job postings or manually enter URL of a job posting, after which the system generates email and sends email upon approval. Advanced techniques like Chain-of-Thought Prompting and Few-Shot Learning were applied to improve the relevance making the email more responsive. This AI driven approach improves engagement and simplifies the business development process for software service companies.
Past Defense Notices
Rich Simeon
Delay-Doppler Channel Estimation for High-Speed Aeronautical Mobile Telemetry ApplicationsWhen & Where:
Eaton Hall, Room 2001B
Degree Type:
PhD Comprehensive DefenseCommittee Members:
Erik Perrins, ChairShannon Blunt
Morteza Hashemi
James Stiles
Craig McLaughlin
Abstract
The next generation of digital communications systems aims to operate in high-Doppler environments such as high-speed trains and non-terrestrial networks that utilize satellites in low-Earth orbit. Current generation systems use Orthogonal Frequency Division Multiplexing modulation which is known to suffer from inter-carrier interference (ICI) when different channel paths have dissimilar Doppler shifts.
A new Orthogonal Time Frequency Space (OTFS) modulation (also known as Delay-Doppler modulation) is proposed as a candidate modulation for 6G networks that is resilient to ICI. To date, OTFS demodulation designs have focused on the use cases of popular urban terrestrial channel models where path delay spread is a fraction of the OTFS symbol duration. However, wireless wide-area networks that operate in the aeronautical mobile telemetry (AMT) space can have large path delay spreads due to reflections from distant geographic features. This presents problems for existing channel estimation techniques which assume a small maximum expected channel delay, since data transmission is paused to sound the channel by an amount equal to twice the maximum channel delay. The dropout in data contributes to a reduction in spectral efficiency.
Our research addresses OTFS limitations in the AMT use case. We start with an exemplary OTFS framework with parameters optimized for AMT. Following system design, we focus on two distinct areas to improve OTFS performance in the AMT environment. First we propose a new channel estimation technique using a pilot signal superimposed over data that can measure large delay spread channels with no penalty in spectral efficiency. A successive interference cancellation algorithm is used to iteratively improve channel estimates and jointly decode data. A second aspect of our research aims to equalize in delay-Doppler space. In the delay-Doppler paradigm, the rapid channel variations seen in the time-frequency domain is transformed into a sparse quasi-stationary channel in the delay-Doppler domain. We propose to use machine learning using Gaussian Process Regression to take advantage of the sparse and stationary channel and learn the channel parameters to compensate for the effects of fractional Doppler in which simpler channel estimation techniques cannot mitigate. Both areas of research can advance the robustness of OTFS across all communications systems.
Mohammad Ful Hossain Seikh
AAFIYA: Antenna Analysis in Frequency-domain for Impedance and Yield AssessmentWhen & Where:
Eaton Hall, Room 2001B
Degree Type:
MS Project DefenseCommittee Members:
Jim Stiles, ChairRachel Jarvis
Alessandro Salandrino
Abstract
This project presents AAFIYA (Antenna Analysis in Frequency-domain for Impedance and Yield Assessment), a modular Python toolkit developed to automate and streamline the characterization and analysis of radiofrequency (RF) antennas using both measurement and simulation data. Motivated by the need for reproducible, flexible, and publication-ready workflows in modern antenna research, AAFIYA provides comprehensive support for all major antenna metrics, including S-parameters, impedance, gain and beam patterns, polarization purity, and calibration-based yield estimation. The toolkit features robust data ingestion from standard formats (such as Touchstone files and beam pattern text files), vectorized computation of RF metrics, and high-quality plotting utilities suitable for scientific publication.
Validation was carried out using measurements from industry-standard electromagnetic anechoic chamber setups involving both Log Periodic Dipole Array (LPDA) reference antennas and Askaryan Radio Array (ARA) Bottom Vertically Polarized (BVPol) antennas, covering a frequency range of 50–1500 MHz. Key performance metrics, such as broadband impedance matching, S11 and S21 related calculations, 3D realized gain patterns, vector effective lengths, and cross-polarization ratio, were extracted and compared against full-wave electromagnetic simulations (using HFSS and WIPL-D). The results demonstrate close agreement between measurement and simulation, confirming the reliability of the workflow and calibration methodology.
AAFIYA’s open-source, extensible design enables rapid adaptation to new experiments and provides a foundation for future integration with machine learning and evolutionary optimization algorithms. This work not only delivers a validated toolkit for antenna research and pedagogy but also sets the stage for next-generation approaches in automated antenna design, optimization, and performance analysis.
Soumya Baddham
Battling Toxicity: A Comparative Analysis of Machine Learning Models for Content ModerationWhen & Where:
Eaton Hall, Room 2001B
Degree Type:
MS Project DefenseCommittee Members:
David Johnson, ChairPrasad Kulkarni
Hongyang Sun
Abstract
With the exponential growth of user-generated content, online platforms face unprecedented challenges in moderating toxic and harmful comments. Due to this, Automated content moderation has emerged as a critical application of machine learning, enabling platforms to ensure user safety and maintain community standards. Despite its importance, challenges such as severe class imbalance, contextual ambiguity, and the diverse nature of toxic language often compromise moderation accuracy, leading to biased classification performance.
This project presents a comparative analysis of machine learning approaches for a Multi-Label Toxic Comment Classification System using the Toxic Comment Classification dataset from Kaggle. The study examines the performance of traditional algorithms, such as Logistic Regression, Random Forest, and XGBoost, alongside deep architectures, including Bi-LSTM, CNN-Bi-LSTM, and DistilBERT. The proposed approach utilizes word-level embeddings across all models and examines the effects of architectural enhancements, hyperparameter optimization, and advanced training strategies on model robustness and predictive accuracy.
The study emphasizes the significance of loss function optimization and threshold adjustment strategies in improving the detection of minority classes. The comparative results reveal distinct performance trade-offs across model architectures, with transformer models achieving superior contextual understanding at the cost of computational complexity. At the same time, deep learning approaches(LSTM models) offer efficiency advantages. These findings establish evidence-based guidelines for model selection in real-world content moderation systems, striking a balance between accuracy requirements and operational constraints.
Manu Chaudhary
Utilizing Quantum Computing for Solving Multidimensional Partial Differential EquationsWhen & Where:
Eaton Hall, Room 2001B
Degree Type:
PhD Dissertation DefenseCommittee Members:
Esam El-Araby, ChairPerry Alexander
Tamzidul Hoque
Prasad Kulkarni
Tyrone Duncan
Abstract
Quantum computing has the potential to revolutionize computational problem-solving by leveraging the quantum mechanical phenomena of superposition and entanglement, which allows for processing a large amount of information simultaneously. This capability is significant in the numerical solution of complex and/or multidimensional partial differential equations (PDEs), which are fundamental to modeling various physical phenomena. There are currently many quantum techniques available for solving partial differential equations (PDEs), which are mainly based on variational quantum circuits. However, the existing quantum PDE solvers, particularly those based on variational quantum eigensolver (VQE) techniques, suffer from several limitations. These include low accuracy, high execution times, and low scalability on quantum simulators as well as on noisy intermediate-scale quantum (NISQ) devices, especially for multidimensional PDEs.
In this work, we propose an efficient and scalable algorithm for solving multidimensional PDEs. We present two variants of our algorithm: the first leverages finite-difference method (FDM), classical-to-quantum (C2Q) encoding, and numerical instantiation, while the second employs FDM, C2Q, and column-by-column decomposition (CCD). Both variants are designed to enhance accuracy and scalability while reducing execution times. We have validated and evaluated our proposed concepts using a number of case studies including multidimensional Poisson equation, multidimensional heat equation, Black Scholes equation, and Navier-Stokes equation for computational fluid dynamics (CFD) achieving promising results. Our results demonstrate higher accuracy, higher scalability, and faster execution times compared to VQE-based solvers on noise-free and noisy quantum simulators from IBM. Additionally, we validated our approach on hardware emulators and actual quantum hardware, employing noise mitigation techniques. This work establishes a practical and effective approach for solving PDEs using quantum computing for engineering and scientific applications.
Alex Manley
Taming Complexity in Computer Architecture through Modern AI-Assisted Design and EducationWhen & Where:
Nichols Hall, Room 250 (Gemini Room)
Degree Type:
MS Thesis DefenseCommittee Members:
Heechul Yun, ChairTamzidul Hoque
Mohammad Alian
Prasad Kulkarni
Abstract
The escalating complexity inherent in modern computer architecture presents significant challenges for both professional hardware designers and students striving to gain foundational understanding. Historically, the steady improvement of computer systems was driven by transistor scaling, predictable performance increases, and relatively straightforward architectural paradigms. However, with the end of traditional scaling laws and the rise of heterogeneous and parallel architectures, designers now face unprecedented intricacies involving power management, thermal constraints, security considerations, and sophisticated software interactions. Prior tools and methodologies, often reliant on complex, command-line driven simulations, exacerbate these challenges by introducing steep learning curves, creating a critical need for more intuitive, accessible, and efficient solutions. To address these challenges, this thesis introduces two innovative, modern tools.
The first tool, SimScholar, provides an intuitive graphical user interface (GUI) built upon the widely-used gem5 simulator. SimScholar significantly simplifies the simulation process, enabling students and educators to more effectively engage with architectural concepts through a visually guided environment, both reducing complexity and enhancing conceptual understanding. Supporting SimScholar, the gem5 Extended Modules API (gEMA) offers streamlined backend integration with gem5, ensuring efficient communication, modularity, and maintainability.
The second contribution, gem5 Co-Pilot, delivers an advanced framework for architectural design space exploration (DSE). Co-Pilot integrates cycle-accurate simulation via gem5, detailed power and area modeling through McPAT, and intelligent optimization assisted by a large language model (LLM). Central to Co-Pilot is the Design Space Declarative Language (DSDL), a Python-based domain-specific language that facilitates structured, clear specification of design parameters and constraints.
Collectively, these tools constitute a comprehensive approach to taming complexity in computer architecture, offering powerful, user-friendly solutions tailored to both educational and professional settings.
Prashanthi Mallojula
On the Security of Mobile and Auto Companion AppsWhen & Where:
Eaton Hall, Room 2001B
Degree Type:
PhD Dissertation DefenseCommittee Members:
Bo Luo, ChairAlex Bardas
Fengjun Li
Hongyang Sun
Huazhen Fang
Abstract
The rapid development of mobile apps on modern smartphone platforms has raised critical concerns regarding user data privacy and the security of app-to-device communications, particularly with companion apps that interface with external IoT or cyber-physical systems (CPS). In this dissertation, we investigate two major aspects of mobile app security: the misuse of permission mechanisms and the security of app to device communication in automotive companion apps.
Mobile apps seek user consent for accessing sensitive information such as location and personal data. However, users often blindly accept these permission requests, allowing apps to abuse this mechanism. As long as a permission is requested, state-of-the-art security mechanisms typically treat it as legitimate. This raises a critical question: Are these permission requests always valid? To explore this, we validate permission requests using statistical analysis on permission sets extracted from groups of functionally similar apps. We identify mobile apps with abusive permission access and quantify the risk of information leakage posed by each app. Through a large-scale statistical analysis of permission sets from over 200,000 Android apps, our findings reveal that approximately 10% of the apps exhibit highly risky permission usage.
Next, we present a comprehensive study of automotive companion apps, a rapidly growing yet underexplored category of mobile apps. These apps are used for vehicle diagnostics, telemetry, and remote control, and they often interface with in-vehicle networks via OBD-II dongles, exposing users to significant privacy and security risks. Using a hybrid methodology that combines static code analysis, dynamic runtime inspection, and network traffic monitoring, we analyze 154 publicly available Android automotive apps. Our findings uncover a broad range of critical vulnerabilities. Over 74% of the analyzed apps exhibit vulnerabilities that could lead to private information leakage, property theft, or even real-time safety risks while driving. Specifically, 18 apps were found to connect to open OBD-II dongles without requiring any authentication, accept arbitrary CAN bus commands from potentially malicious users, and transmit those commands to the vehicle without validation. 16 apps were found to store driving logs in external storage, enabling attackers to reconstruct trip histories and driving patterns. We demonstrate several real-world attack scenarios that illustrate how insecure data storage and communication practices can compromise user privacy and vehicular safety. Finally, we discuss mitigation strategies and detail the responsible disclosure process undertaken with the affected developers.
Syed Abid Sahdman
Soliton Generation and Pulse Optimization using Nonlinear Transmission LinesWhen & Where:
Eaton Hall, Room 2001B
Degree Type:
MS Thesis DefenseCommittee Members:
Alessandro Salandrino, ChairShima Fardad
Morteza Hashemi
Abstract
Nonlinear Transmission Lines (NLTLs) have gained significant interest due to their ability to generate ultra-short, high-power RF pulses, which are valuable in applications such as ultrawideband radar, space vehicles, and battlefield communication disruption. The waveforms generated by NLTLs offer frequency diversity not typically observed in High-Power Microwave (HPM) sources based on electron beams. Nonlinearity in lumped element transmission lines is usually introduced using voltage-dependent capacitors due to their simplicity and widespread availability. The periodic structure of these lines introduces dispersion, which broadens pulses. In contrast, nonlinearity causes higher-amplitude regions to propagate faster. The interaction of these effects results in the formation of stable, self-localized waveforms known as solitons.
Soliton propagation in NLTLs can be described by the Korteweg-de Vries (KdV) equation. In this thesis, the Bäcklund Transformation (BT) method has been used to derive both single and two-soliton solutions of the KdV equation. This method links two different partial differential equations (PDEs) and their solutions to produce solutions for nonlinear PDEs. The two-soliton solution is obtained from the single soliton solution using a nonlinear superposition principle known as Bianchi’s Permutability Theorem (BPT). Although the KdV model is suitable for NLTLs where the capacitance-voltage relationship follows that of a reverse-biased p-n junction, it cannot generally represent arbitrary nonlinear capacitance characteristics.
To address this limitation, a Finite Difference Time Domain (FDTD) method has been developed to numerically solve the NLTL equation for soliton propagation. To demonstrate the pulse sharpening and RF generation capability of a varactor-loaded NLTL, a 12-section lumped element circuit has been designed and simulated using LTspice and verified with the calculated result. In airborne radar systems, operational constraints such as range, accuracy, data rate, environment, and target type require flexible waveform design, including variation in pulse widths and pulse repetition frequencies. A gradient descent optimization technique has been employed to generate pulses with varying amplitudes and frequencies by optimizing the NLTL parameters. This work provides a theoretical analysis and numerical simulation to study soliton propagation in NLTLs and demonstrates the generation of tunable RF pulses through optimized circuit design.
Vinay Kumar Reddy Budideti
NutriBot: An AI-Powered Personalized Nutrition Recommendation Chatbot Using RasaWhen & Where:
Eaton Hall, Room 2001B
Degree Type:
MS Project DefenseCommittee Members:
David Johnson, ChairVictor Frost
Prasad Kulkarni
Abstract
In recent years, the intersection of Artificial Intelligence and healthcare has paved the way for intelligent dietary assistance. NutriBot is an AI-powered chatbot developed using the Rasa framework to deliver personalized nutrition recommendations based on user preferences, diet types, and nutritional goals. This full-stack system integrates Rasa NLU, a Flask backend, the Nutritionix API for real-time food data, and a React.js + Tailwind CSS frontend for seamless interaction. The system is containerized using Docker and deployable on cloud platforms like GCP.
The chatbot supports multi-turn conversations, slot-filling, and remembers user preferences such as dietary restrictions or nutrient focus (e.g., high protein). Evaluation of the system showed perfect intent and entity recognition accuracy, fast API response times, and user-friendly fallback handling. While NutriBot currently lacks persistent user profiles and multilingual support, it offers a highly accurate, scalable framework for future extensions such as fitness tracker integration, multilingual capabilities, and smart assistant deployment.
Arun Kumar Punjala
Deep Learning-Based MRI Brain Tumor Classification: Evaluating Sequential Architectures for Diagnostic AccuracyWhen & Where:
Eaton Hall, Room 2001B
Degree Type:
MS Project DefenseCommittee Members:
David Johnson, ChairPrasad Kulkarni
Dongjie Wang
Abstract
Accurate classification of brain tumors from MRI scans plays a vital role in assisting clinical diagnosis and treatment planning. This project investigates and compares three deep learning-based classification approaches designed to evaluate the effectiveness of integrating recurrent layers into conventional convolutional architectures. Specifically, a CNN-LSTM model, a CNN-RNN model with GRU units, and a baseline CNN classifier using EfficientNetB0 are developed and assessed on a curated MRI dataset.
The CNN-LSTM model uses ResNet50 as a feature extractor, with spatial features reshaped and passed through stacked LSTM layers to explore sequential learning on static medical images. The CNN-RNN model implements TimeDistributed convolutional layers followed by GRUs, examining the potential benefits of GRU-based modeling. The EfficientNetB0-based CNN model, trained end-to-end without recurrent components, serves as the performance baseline.
All three models are evaluated using training accuracy, validation loss, confusion matrices, and class-wise performance metrics. Results show that the CNN-LSTM architecture provides the most balanced performance across tumor types, while the CNN-RNN model suffers from mild overfitting. The EfficientNetB0 baseline offers stable and efficient classification for general benchmarking.
Ganesh Nurukurti
Customer Behavior Analytics and Recommendation System for E-CommerceWhen & Where:
Eaton Hall, Room 2001B
Degree Type:
MS Project DefenseCommittee Members:
David Johnson, ChairPrasad Kulkarni
Han Wang
Abstract
In the era of digital commerce, personalized recommendations are pivotal for enhancing user experience and boosting engagement. This project presents a comprehensive recommendation system integrated into an e-commerce web application, designed using Flask and powered by collaborative filtering via Singular Value Decomposition (SVD). The system intelligently predicts and personalizes product suggestions for users based on implicit feedback such as purchases, cart additions, and search behavior.
The foundation of the recommendation engine is built on user-item interaction data, derived from the Brazilian e-commerce Olist dataset. Ratings are simulated using weighted scores for purchases and cart additions, reflecting varying degrees of user intent. These interactions are transformed into a user-product matrix and decomposed using SVD, yielding latent user and product features. The model leverages these latent factors to predict user interest in unseen products, enabling precise and scalable recommendation generation.
To further enhance personalization, the system incorporates real-time user activity. Recent search history is stored in an SQLite database and used to prioritize recommendations that align with the user’s current interests. A diversity constraint is also applied to avoid redundancy, limiting the number of recommended products per category.
The web application supports robust user authentication, product exploration by category, cart management, and checkout simulations. It features a visually driven interface with dynamic visualizations for product insights and user interactions. The home page adapts to individual preferences, showing tailored product recommendations and enabling users to explore categories and details.
In summary, this project demonstrates the practical implementation of a hybrid recommendation strategy combining matrix factorization with contextual user behavior. It showcases the importance of latent factor modeling, data preprocessing, and user-centric design in delivering an intelligent retail experience.