I2S Masters/ Doctoral Theses


All students and faculty are welcome to attend the final defense of I2S graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

No upcoming defense notices for now!

Past Defense Notices

Dates

SM Ishraq-Ul Islam

Title: Quantum Circuit Synthesis using Genetic Algorithms Combined with Fuzzy Logic

When & Where:


LEEP2, Room 1420

Degree Type:

MS Thesis Defense

Committee Members:

Esam El-Araby, Chair
Tamzidul Hoque
Prasad Kulkarni


Abstract

Quantum computing emerges as a promising direction for high-performance computing in the post-Moore era. Leveraging quantum mechanical properties, quantum devices can theoretically provide significant speedup over classical computers in certain problem domains. Quantum algorithms are typically expressed as quantum circuits composed of quantum gates, or as unitary matrices. Execution of quantum algorithms on physical devices requires translation to machine-compatible circuits -- a process referred to as quantum compilation or synthesis. 

 Quantum synthesis is a challenging problem. Physical quantum devices support a limited number of native basis gates, requiring synthesized circuits to be composed of only these gates. Moreover, quantum devices typically have specific qubit topologies, which constrain how and where gates can be applied. Consequently, logical qubits in input circuits and unitaries may need to be mapped to and routed between physical qubits on the device.

 Current Noisy Intermediate-Scale Quantum (NISQ) devices present additional constraints, through their gate errors and high susceptibility to noise. NISQ devices are vulnerable to errors during gate application and their short decoherence times leads to qubits rapidly succumbing to accumulated noise and possibly corrupting computations. Therefore, circuits synthesized for NISQ devices need to have a low number of gates to reduce gate errors, and short execution times to avoid qubit decoherence. 

 The problem of synthesizing device-compatible quantum circuits, while optimizing for low gate count and short execution times, can be shown to be computationally intractable using analytical methods. Therefore, interest has grown towards heuristics-based compilation techniques, which are able to produce approximations of the desired algorithm to a required degree of precision. In this work, we investigate using Genetic Algorithms (GAs) -- a proven gradient-free optimization technique based on natural selection -- for circuit synthesis. In particular, we formulate the quantum synthesis problem as a multi-objective optimization (MOO) problem, with the objectives of minimizing the approximation error, number of multi-qubit gates, and circuit depth. We also employ fuzzy logic for runtime parameter adaptation of GA to enhance search efficiency and solution quality of our proposed quantum synthesis method.


Sravan Reddy Chintareddy

Combating Spectrum Crunch with Efficient Machine-Learning Based Spectrum Access and Harnessing High-frequency Bands for Next-G Wireless Networks

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Comprehensive Defense

Committee Members:

Morteza Hashemi, Chair
Victor Frost
Erik Perrins
Dongjie Wang
Shawn Keshmiri

Abstract

There is an increasing trend in the number of wireless devices that is now already over 14 billion and is expected to grow to 40 billion devices by 2030. In addition, we are witnessing an unprecedented proliferation of applications and technologies with wireless connectivity requirements such as unmanned aerial vehicles, connected health, and radars for autonomous vehicles. The advent of new wireless technologies and devices will only worsen the current spectrum crunch that service providers and wireless operators are already experiencing. In this PhD study, we address these challenges through the following research thrusts, in which we consider two emerging applications aimed at advancing spectrum efficiency and high-frequency connectivity solutions.

First, we focus on effectively utilizing the existing spectrum resources for emerging applications such as networked UAVs operating within the Unmanned Traffic Management (UTM) system. In this thrust, we develop a coexistence framework for UAVs to share spectrum with traditional cellular networks by using machine learning (ML) techniques so that networked UAVs act as secondary users without interfering with primary users. We propose federated learning (FL) and reinforcement learning (RL) solutions to establish a collaborative spectrum sensing and dynamic spectrum allocation framework for networked UAVs. In the second part, we explore the potential of millimeter-wave (mmWave) and terahertz (THz) frequency bands for high-speed data transmission in urban settings. Specifically, we investigate THz-based midhaul links for 5G networks, where a network's central units (CUs) connect to distributed units (DUs). Through numerical analysis, we assess the feasibility of using 140 GHz links and demonstrate the merits of high-frequency bands to support high data rates in midhaul networks for future urban communications infrastructure. Overall, this research is aimed at establishing frameworks and methodologies that contribute toward the sustainable growth and evolution of wireless connectivity.


Arnab Mukherjee

Attention-Based Solutions for Occlusion Challenges in Person Tracking

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Comprehensive Defense

Committee Members:

Prasad Kulkami, Chair
Sumaiya Shomaji
Hongyang Sun
Jian Li

Abstract

Person tracking and association is a complex task in computer vision applications. Even with a powerful detector, a highly accurate association algorithm is necessary to match and track the correct person across all frames. This method has numerous applications in surveillance, and its complexity increases with the number of detected objects and their movements across frames. A significant challenge in person tracking is occlusion, which occurs when an individual being tracked is partially or fully blocked by another object or person. This can make it difficult for the tracking system to maintain the identity of the individual and track them effectively.

In this research, we propose a solution to the occlusion problem by utilizing an occlusion-aware spatial attention transformer. We have divided the entire tracking association process into two scenarios: occlusion and no-occlusion. When a detected person with a specific ID suddenly disappears from a frame for a certain period, we employ advanced methods such as Detector Integration and Pose Estimation to ensure the correct association. Additionally, we implement a spatial attention transformer to differentiate these occluded detections, transform them, and then match them with the correct individual using the Cosine Similarity Metric.

The features extracted from the attention transformer provide a robust baseline for detecting people, enhancing the algorithms adaptability and addressing key challenges associated with existing approaches. This improved method reduces the number of misidentifications and instances of ID switching while also enhancing tracking accuracy and precision.


Agraj Magotra

Data-Driven Insights into Sustainability: An Artificial Intelligence (AI) Powered Analysis of ESG Practices in the Textile and Apparel Industry

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

Sumaiya Shomaji, Chair
Prasad Kulkarni
Zijun Yao


Abstract

The global textile and apparel (T&A) industry is under growing scrutiny for its substantial environmental and social impact, producing 92 million tons of waste annually and contributing to 20% of global water pollution. In Bangladesh, one of the world's largest apparel exporters, the integration of Environmental, Social, and Governance (ESG) practices is critical to meet international sustainability standards and maintain global competitiveness. This master's study leverages Artificial Intelligence (AI) and Machine Learning (ML) methodologies to comprehensively analyze unstructured corporate data related to ESG practices among LEED-certified Bangladeshi T&A factories.

Our study employs advanced techniques, including Web Scraping, Natural Language Processing (NLP), and Topic Modeling, to extract and analyze sustainability-related information from factory websites. We develop a robust ML framework that utilizes Non-Negative Matrix Factorization (NMF) for topic extraction and a Random Forest classifier for ESG category prediction, achieving an 86% classification accuracy. The study uncovers four key ESG themes: Environmental Sustainability, Social : Workplace Safety and Compliance, Social: Education and Community Programs, and Governance. The analysis reveals that 46% of factories prioritize environmental initiatives, such as energy conservation and waste management, while 44% emphasize social aspects, including workplace safety and education. Governance practices are significantly underrepresented, with only 10% of companies addressing ethical governance, healthcare provisions and employee welfare.

To deepen our understanding of the ESG themes, we conducted a Centrality Analysis to identify the most influential keywords within each category, using measures such as degree, closeness, and eigenvector centrality. Furthermore, our analysis reveals that higher certification levels, like Platinum, are associated with a more balanced emphasis on environmental, social, and governance practices, while lower levels focus primarily on environmental efforts. These insights highlight key areas where the industry can improve and inform targeted strategies for enhancing ESG practices. Overall, this ML framework provides a data-driven, scalable approach for analyzing unstructured corporate data and promoting sustainability in Bangladesh’s T&A sector, offering actionable recommendations for industry stakeholders, policymakers, and global brands committed to responsible sourcing.


Samyoga Bhattarai

Pro-ID: A Secure Face Recognition System using Locality Sensitive Hashing to Protect Human ID

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Hongyang Sun


Abstract

Face recognition systems are widely used in various applications, from mobile banking apps to personal smartphones. However, these systems often store biometric templates in raw form, posing significant security and privacy risks. Pro-ID addresses this vulnerability by incorporating SimHash, an algorithm of Locality Sensitive Hashing (LSH), to create secure and irreversible hash codes of facial feature vectors. Unlike traditional methods that leave raw data exposed to potential breaches, SimHash transforms the feature space into high-dimensional hash codes, safeguarding user identity while preserving system functionality. 

The proposed system creates a balance between two aspects: security and the system’s performance. Additionally, the system is designed to resist common attacks, including brute force and template inversion, ensuring that even if the hashed templates are exposed, the original biometric data cannot be reconstructed.  

A key challenge addressed in this project is minimizing the trade-off between security and performance. Extensive evaluations demonstrate that the proposed method maintains competitive accuracy rates comparable to traditional face recognition systems while significantly enhancing security metrics such as irreversibility, unlinkability, and revocability. This innovative approach contributes to advancing the reliability and trustworthiness of biometric systems, providing a secure framework for applications in face recognition systems. 


Shalmoli Ghosh

High-Power Fabry-Perot Quantum-Well Laser Diodes for Application in Multi-Channel Coherent Optical Communication Systems

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Rongqing Hui, Chair
Shannon Blunt
James Stiles


Abstract

Wavelength Division Multiplexing (WDM) is essential for managing rapid network traffic growth in fiber optic systems. Each WDM channel demands a narrow-linewidth, frequency-stabilized laser diode, leading to complexity and increased energy consumption. Multi-wavelength laser sources, generating optical frequency combs (OFC), offer an attractive solution, enabling a single laser diode to provide numerous equally spaced spectral lines for enhanced bandwidth efficiency.

Quantum-dot and quantum-dash OFCs provide phase-synchronized lines with low relative intensity noise (RIN), while Quantum Well (QW) OFCs offer higher power efficiency, but they have higher RIN in the low frequency region of up to 2 GHz. However, both quantum-dot/dash and QW based OFCs, individual spectral lines exhibit high phase noise, limiting coherent detection. Output power levels of these OFCs range between 1-20 mW where the power of each spectral line is typically less than -5 dBm. Due to this requirement, these OFCs require excessive optical amplification, also they possess relatively broad spectral linewidths of each spectral line, due to the inverse relationship between optical power and linewidth as per the Schawlow-Townes formula. This constraint hampers their applicability in coherent detection systems, highlighting a challenge for achieving high-performance optical communication.

In this work, coherent system application of a single-section Quantum-Well Fabry-Perot (FP) laser diode is demonstrated. This laser delivers over 120 mW optical power at the fiber pigtail with a mode spacing of 36.14 GHz. In an experimental setup, 20 spectral lines from a single laser transmitter carry 30 GBaud 16-QAM signals over 78.3 km single-mode fiber, achieving significant data transmission rates. With the potential to support a transmission capacity of 2.15 Tb/s (4.3 Tb/s for dual polarization) per transmitter, including Forward Error Correction (FEC) and maintenance overhead, it offers a promising solution for meeting the escalating demands of modern network traffic efficiently.


TJ Barclay

Proof-Producing Translation from Gallina to CakeML

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

PhD Dissertation Defense

Committee Members:

Perry Alexander, Chair
Alex Bardas
Drew Davidson
Sankha Guria
Eileen Nutting

Abstract

Users of theorem provers often desire to to extract their verified code to a  more efficient, compiled language. Coq's current extraction mechanism provides this facility but does not provide a formal guarantee that the extracted code has the same semantics as the logic it is extracted from. Providing such a guarantee requires a formal semantics for the target code. The CakeML project, plemented in HOL4, provides a formally defined syntax and semantics for a subset of SML and includes a proof-producing translator from higher-order logic to CakeML. We use the CakeML definition to develop certifying extractor to CakeML from Gallina using the translation and proof techniques of the HOL4 CakeML translator. We also address how differences between HOL4 (higher-order logic) and Coq calculus of constructions) effect the implementation details of the Coq translator.


Anissa Khan

Privacy Preserving Biometric Matching

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Thesis Defense

Committee Members:

Perry Alexander, Chair
Prasad Kulkarni
Fengjun Li


Abstract

Biometric matching is a process by which distinct features are used to identify an individual. Doing so privately is important because biometric data, such as fingerprints or facial features, is not something that can be easily changed or updated if put at risk. In this study, we perform a piece of the biometric matching process in a privacy preserving manner by using secure multiparty computation (SMPC). Using SMPC allows the identifying biological data, called a template, to remain stored by the data owner during the matching process. This provides security guarantees to the biological data while it is in use and therefore reduces the chances the data is stolen. In this study, we find that performing biometric matching using SMPC is just as accurate as performing the same match in plaintext.


Bryan Richlinski

Prioritize Program Diversity: Enumerative Synthesis with Entropy Ordering

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Sankha Guria, Chair
Perry Alexander
Drew Davidson
Jennifer Lohoefener

Abstract

Program synthesis is a popular way to create a correct-by-construction program from a user-provided specification. Term enumeration is a leading technique to systematically explore the space of programs by generating terms from a formal grammar. These terms are treated as candidate programs which are tested/verified against the specification for correctness. In order to prioritize candidates more likely to satisfy the specification, enumeration is often ordered by program size or other domain-specific heuristics. However, domain-specific heuristics require expert knowledge, and enumeration by size often leads to terms comprised of frequently repeating symbols that are less likely to satisfy a specification. In this thesis, we build a heuristic that prioritizes term enumeration based on variability of individual symbols in the program, i.e., information entropy of the program. We use this heuristic to order programs in both top-down and bottom-up enumeration. We evaluated our work on a subset of the PBE-String track of the 2017 SyGuS competition benchmarks and compared against size-based enumeration. In top-down enumeration, our entropy heuristic shortens runtime in ~56% of cases and tests fewer programs in ~80% before finding a valid solution. For bottom-up enumeration, our entropy heuristic improves the number of enumerated programs in ~41% of cases before finding a valid solution, without improving the runtime. Our findings suggest that using entropy to prioritize program enumeration is a promising step forward for faster program synthesis.


Elizabeth Wyss

A New Frontier for Software Security: Diving Deep into npm

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Comprehensive Defense

Committee Members:

Drew Davidson, Chair
Alex Bardas
Fengjun Li
Bo Luo
J. Walker

Abstract

Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week. 

However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.

This research provides a deep dive into the npm-centric software supply chain, exploring various facets and phenomena that impact the security of this software supply chain. Such factors include (i) hidden code clones--which obscure provenance and can stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts open-source development practices, and (v) package compromise via malicious updates. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains.