I2S Masters/ Doctoral Theses


All students and faculty are welcome to attend the final defense of I2S graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Zhaohui Wang

Detection and Mitigation of Cross-App Privacy Leakage and Interaction Threats in IoT Automation

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

PhD Dissertation Defense

Committee Members:

Fengjun Li, Chair
Alex Bardas
Drew Davidson
Bo Luo
Haiyang Chao

Abstract

The rapid growth of Internet of Things (IoT) technology has brought unprecedented convenience to everyday life, enabling users to deploy automation rules and develop IoT apps tailored to their specific needs. However, modern IoT ecosystems consist of numerous devices, applications, and platforms that interact continuously. As a result, users are increasingly exposed to complex and subtle security and privacy risks that are difficult to fully comprehend. Even interactions among seemingly harmless apps can introduce unforeseen security and privacy threats. In addition, violations of memory integrity can undermine the security guarantees on which IoT apps rely.

The first approach investigates hidden cross-app privacy leakage risks in IoT apps. These risks arise from cross-app interaction chains formed among multiple seemingly benign IoT apps. Our analysis reveals that interactions between apps can expose sensitive information such as user identity, location, tracking data, and activity patterns. We quantify these privacy leaks by assigning probability scores to evaluate risk levels based on inferences. In addition, we provide a fine-grained categorization of privacy threats to generate detailed alerts, enabling users to better understand and address specific privacy risks.

The second approach addresses cross-app interaction threats in IoT automation systems by leveraging a logic-based analysis model grounded in event relations. We formalize event relationships, detect event interferences, and classify rule conflicts, then generate risk scores and conflict rankings to enable comprehensive conflict detection and risk assessment. To mitigate the identified interaction threats, an optimization-based approach is employed to reduce risks while preserving system functionality. This approach ensures comprehensive coverage of cross-app interaction threats and provides a robust solution for detecting and resolving rule conflicts in IoT environments.

To support the development and rigorous evaluation of these security analyses, we further developed a large-scale, manually verified, and comprehensive dataset of real-world IoT apps. This clean and diverse benchmark dataset supports the development and validation of IoT security and privacy solutions. All proposed approaches are evaluated using this dataset of real-world apps, collectively offering valuable insights and practical tools for enhancing IoT security and privacy against cross-app threats. Furthermore, we examine the integrity of the execution environment that supports IoT apps. We show that, even under non-privileged execution, carefully crafted memory access patterns can induce bit flips in physical memory, allowing attackers to corrupt data and compromise system integrity without requiring elevated privileges.


Shawn Robertson

A Low-Power Low-Throughput Communications Solution for At-Risk Populations in Resource Constrained Contested Environments

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Dissertation Defense

Committee Members:

Alex Bardas, Chair
Drew Davidson
Fengjun Li
Bo Luo
Shawn Keshmiri

Abstract

In resource‑constrained contested environments (RCCEs), communications are routinely censored, surveilled, or disrupted by nation‑state adversaries, leaving at‑risk populations—including protesters, dissidents, disaster‑affected communities, and military units—without secure connectivity. This dissertation introduces MeshBLanket, a Bluetooth Mesh‑based framework designed for low‑power, low‑throughput messaging with minimal electromagnetic spectrum exposure. Built on commercial off‑the‑shelf hardware, MeshBLanket extends the Bluetooth Mesh specification with automated provisioning and network‑wide key refresh to enhance scalability and resilience.

We evaluated MeshBLanket through field experimentation (range, throughput, battery life, and security enhancements) and qualitative interviews with ten senior U.S. Army communications experts. Thematic analysis revealed priorities of availability, EMS footprint reduction, and simplicity of use, alongside adoption challenges and institutional skepticism. Results demonstrate that MeshBLanket maintains secure messaging under load, supports autonomous key refresh, and offers operational relevance at the forward edge of battlefields.

Beyond military contexts, parallels with protest environments highlight MeshBLanket’s broader applicability for civilian populations facing censorship and surveillance. By unifying technical experimentation with expert perspectives, this work contributes a proof‑of‑concept communications architecture that advances secure, resilient, and user‑centric connectivity in environments where traditional infrastructure is compromised or weaponized.


 


Past Defense Notices

Dates

Jigyas Sharma

SEDPD: Sampling-Enhanced Differentially Private Defense against Backdoor Poisoning Attacks of Image Classification

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Han Wang, Chair
Drew Davidson
Dongjie Wang


Abstract

Recent advancements in explainable artificial intelligence (XAI) have brought significant transparency to machine learning by providing interpretable explanations alongside model predictions. However, this transparency has also introduced vulnerabilities, enhancing adversaries’ ability for the model decision processes through explanation-guided attacks. In this paper, we propose a robust, model-agnostic defense framework to mitigate these vulnerabilities by explanations while preserving the utility of XAI. Our framework employs a multinomial sampling approach that perturbs explanation values generated by techniques such as SHAP and LIME. These perturbations ensure differential privacy (DP) bounds, disrupting adversarial attempts to embed malicious triggers while maintaining explanation quality for legitimate users. To validate our defense, we introduce a threat model tailored to image classification tasks. By applying our defense framework, we train models with pixel-sampling strategies that integrate DP guarantees, enhancing robustness against backdoor poisoning attacks with XAI. Extensive experiments on widely used datasets, such as CIFAR-10, MNIST, CIFAR-100 and Imagenette, and models, including ConvMixer and ResNet-50, show that our approach effectively mitigates explanation-guided attacks without compromising the accuracy of the model. We also test our defense performance against other backdoor attacks, which shows our defense framework can detect other type backdoor triggers very well. This work highlights the potential of DP in securing XAI systems and ensures safer deployment of machine learning models in real-world applications.


Dimple Galla

Intelligent Application for Cold Email Generation: Business Outreach

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

Cold emailing remains an effective strategy for software service companies to improve organizational reach by acquiring clients. Generic emails often fail to get a response.

This project leverages Generative AI to automate the cold email generation. This project is built with the Llama-3.1 model and a Chroma vector database that supports the semantic search of keywords in the job description that matches the project portfolio links of software service companies. The application automatically extracts the technology related job openings for Fortune 500 companies. Users can either select from these extracted job postings or manually enter URL of a job posting, after which the system generates email and sends email upon approval. Advanced techniques like Chain-of-Thought Prompting and Few-Shot Learning were applied to improve the relevance making the email more responsive. This AI driven approach improves engagement and simplifies the business development process for software service companies.


Shahima Kalluvettu Kuzhikkal

Machine Learning Based Predictive Maintenance for Automotive Systems

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Rachel Jarvis
Prasad Kulkarni
Hongyang Sun

Abstract

Predictive maintenance plays a central role in reducing vehicle downtime and improving operational efficiency by using data-driven methods to classify the condition of automotive engines. Rather than relying on fixed service schedules or reacting to unexpected breakdowns, this approach leverages machine learning to distinguish between healthy and failed engines based on operational data.

In this project, engine telemetry data capturing key parameters such as engine speed, fuel pressure, and coolant temperature was used to train and evaluate several machine learning models, including logistic regression, random forest, k-nearest neighbors, and a neural network. To further enhance predictive performance, ensemble strategies such as soft voting and stacking were applied. The stacking ensemble, which combines the strengths of multiple classifiers through a meta-learning approach, demonstrated particularly effective results.

This classification-based framework demonstrates how data-driven fault detection can enhance automotive maintenance operations. By identifying engine failures more reliably, machine learning enables safer transportation, reduces maintenance costs, and enhances overall vehicle dependability. Beyond individual vehicles, such approaches have broader applications in fleet management, where proactive decision-making can improve service continuity, reduce operational risks, and increase customer satisfaction.


Jennifer Quirk

Aspects of Doppler-Tolerant Radar Waveforms

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Comprehensive Defense

Committee Members:

Shannon Blunt, Chair
Patrick McCormick
Charles Mohr
James Stiles
Zsolt Talata

Abstract

The Doppler tolerance of a waveform refers to its behavior when subjected to a fast-time Doppler shift imposed by scattering that involves nonnegligible radial velocity. While previous efforts have established decision-based criteria that lead to a binary judgment of Doppler tolerant or intolerant, it is also useful to establish a measure of the degree of Doppler tolerance. The purpose in doing so is to establish a consistent standard, thereby permitting assessment across different parameterizations, as well as introducing a Doppler “quasi-tolerant” trade-space that can ultimately inform automated/cognitive waveform design in increasingly complex and dynamic radio frequency (RF) environments. 

 

Separately, the application of slow-time coding (STC) to the Doppler-tolerant linear FM (LFM) waveform has been examined for disambiguation of multiple range ambiguities. However, using STC with non-adaptive Doppler processing often results in high Doppler “cross-ambiguity” side lobes that can hinder range disambiguation despite the degree of separability imparted by STC. To enhance this separability, a gradient-based optimization of STC sequences is developed, and a “multi-range” (MR) modification to the reiterative super-resolution (RISR) approach that accounts for the distinct range interval structures from STC is examined. The efficacy of these approaches is demonstrated using open-air measurements. 

 

The proposed work to appear in the final dissertation focuses on the connection between Doppler tolerance and STC. The first proposal includes the development of a gradient-based optimization procedure to generate Doppler quasi-tolerant random FM (RFM) waveforms. Other proposals consider limitations of STC, particularly when processed with MR-RISR. The final proposal introduces an “intrapulse” modification of the STC/LFM structure to achieve enhanced sup pression of range-folded scattering in certain delay/Doppler regions while retaining a degree of Doppler tolerance.


Mary Jeevana Pudota

Assessing Processor Allocation Strategies for Online List Scheduling of Moldable Task Graphs

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Thesis Defense

Committee Members:

Hongyang Sun, Chair
David Johnson
Prasad Kulkarni


Abstract

Scheduling a graph of moldable tasks, where each task can be executed by a varying number of processors with execution time depending on the processor allocation, represents a fundamental problem in high-performance computing (HPC). The online version of the scheduling problem introduces an additional constraint: each task is only discovered when all its predecessors have been completed. A key challenge for this online problem lies in making processor allocation decisions without complete knowledge of the future tasks or dependencies. This uncertainty can lead to inefficient resource utilization and increased overall completion time, or makespan. Recent studies have provided theoretical analysis (i.e., derived competitive ratios) for certain processor allocation algorithms. However, the algorithms’ practical performance remains under-explored, and their reliance on fixed parameter settings may not consistently yield optimal performance across varying workloads. In this thesis, we conduct a comprehensive evaluation of three processor allocation strategies by empirically assessing their performance under widely used speedup models and diverse graph structures. These algorithms are integrated into a List scheduling framework that greedily schedules ready tasks based on the current processor availability. We perform systematic tuning of the algorithms’ parameters and report the best observed makespan together with the corresponding parameter settings. Our findings highlight the critical role of parameter tuning in obtaining optimal makespan performance, regardless of the differences in allocation strategies. The insights gained in this study can guide the deployment of these algorithms in practical runtime systems.


Aidan Schmelzle

Exploration of Human Design with Genetic Algorithms as Artistic Medium for Color Images

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

Arvin Agah, Chair
David Johnson
Jennifer Lohoefener


Abstract

Genetic Algorithms (GAs), a subclass of evolutionary algorithms, seek to apply the concept of natural selection to promote the optimization and furtherance of “something” designated by the user. GAs generate a population of chromosomes represented as value strings, score each chromosome with a “fitness function” on a defined set of criteria, and mutate future generations depending on the scores ascribed to each chromosome. In this project, each chromosome is a bitstring representing one canvased color artwork. Artworks are scored with a variety of design fundamentals and user preference. The artworks are then evolved through thousands of generations and the final piece is computationally drawn for analysis. While the rise of gradient-based optimization has resulted in more limited use-cases of GAs, genetic algorithms still have applications in various settings such as hyperparameter tuning, mathematical optimization, reinforcement learning, and black box scenarios. Neural networks are favored presently in image generation due to their pattern recognition and ability to produce new content; however, in cases where a user is seeking to implement their own vision through careful algorithmic refinement, genetic algorithms still find a place in visual computing.


Andrew Riachi

An Investigation Into The Memory Consumption of Web Browsers and A Memory Profiling Tool Using Linux Smaps

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Thesis Defense

Committee Members:

Prasad Kulkami, Chair
Perry Alexander
Drew Davidson
Heechul Yun

Abstract

Web browsers are notorious for consuming large amounts of memory. Yet, they have become the dominant framework for writing GUIs because the web languages are ergonomic for programmers and have a cross-platform reach. These benefits are so enticing that even a large portion of mobile apps, which have to run on resource-constrained devices, are running a web browser under the hood. Therefore, it is important to keep the memory consumption of web browsers as low as practicable.

In this thesis, we investigate the memory consumption of web browsers, in particular, compared to applications written in native GUI frameworks. We introduce smaps-profiler, a tool to profile the overall memory consumption of Linux applications that can report memory usage other profilers simply do not measure. Using this tool, we conduct experiments which suggest that most of the extra memory usage compared to native applications could be due the size of the web browser program itself. We discuss our experiments and findings, and conclude that even more rigorous studies are needed to profile GUI applications.


Elizabeth Wyss

A New Frontier for Software Security: Diving Deep into npm

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Dissertation Defense

Committee Members:

Drew Davidson, Chair
Alex Bardas
Fengjun Li
Bo Luo
J. Walker

Abstract

Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week. 

However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the end-users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.

This research provides a deep dive into the npm-centric software supply chain, exploring distinctive phenomena that impact its overall security and usability. Such factors include (i) hidden code clones--which may stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts of open-source development practices, (v) package compromise via malicious updates, (vi) spammers disseminating phishing links within package metadata, and (vii) abuse of cryptocurrency protocols designed to reward the creators of high-impact packages. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains. 


Alfred Fontes

Optimization and Trade-Space Analysis of Pulsed Radar-Communication Waveforms using Constant Envelope Modulations

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jonathan Owen


Abstract

Dual function radar communications (DFRC) is a method of co-designing a single radio frequency system to perform simultaneous radar and communications service. DFRC is ultimately a compromise between radar sensing performance and communications data throughput due to the conflicting requirements between the sensing and information-bearing signals.

A novel waveform-based DFRC approach is phase attached radar communications (PARC), where a communications signal is embedded onto a radar pulse via the phase modulation between the two signals. The PARC framework is used here in a new waveform design technique that designs the radar component of a PARC signal to match the PARC DFRC waveform expected power spectral density (PSD) to a desired spectral template. This provides better control over the PARC signal spectrum, which mitigates the issue of PARC radar performance degradation from spectral growth due to the communications signal. 

The characteristics of optimized PARC waveforms are then analyzed to establish a trade-space between radar and communications performance within a PARC DFRC scenario. This is done by sampling the DFRC trade-space continuum with waveforms that contain a varying degree of communications bandwidth, from a pure radar waveform (no embedded communications) to a pure communications waveform (no radar component). Radar performance, which is degraded by range sidelobe modulation (RSM) from the communications signal randomness, is measured from the PARC signal variance across pulses; data throughput is established as the communications performance metric. Comparing the values of these two measures as a function of communications symbol rate explores the trade-offs in performance between radar and communications with optimized PARC waveforms.


Qua Nguyen

Hybrid Array and Privacy-Preserving Signaling Optimization for NextG Wireless Communications

When & Where:


Zoom (ID: 87142881713 Passcode: 135902)

Degree Type:

PhD Dissertation Defense

Committee Members:

Erik Perrins, Chair
Morteza Hashemi
Zijun Yao
Taejoon Kim
KC Long

Abstract

This PhD research tackles two critical challenges in NextG wireless networks: hybrid precoder design for wideband sub-Terahertz (sub-THz) massive multiple-input multiple-output (MIMO) communications and privacy-preserving federated learning (FL) over wireless networks.

In the first part, we propose a novel hybrid precoding framework that integrates true-time delay (TTD) devices and phase shifters (PS) to counteract the beam squint effect - a significant challenge in the wideband sub-THz massive MIMO systems that leads to considerable loss in array gain. Unlike previous methods that only designed TTD values while fixed PS values and assuming unbounded time delay values, our approach jointly optimizes TTD and PS values under realistic time delays constraint. We determine the minimum number of TTD devices required to achieve a target array gain using our proposed approach. Then, we extend the framework to multi-user wideband systems and formulate a hybrid array optimization problem aiming to maximize the minimum data rate across users. This problem is decomposed into two sub-problems: fair subarray allocation, solved via continuous domain relaxation, and subarray gain maximization, addressed via a phase-domain transformation.

The second part focuses on preserving privacy in FL over wireless networks. First, we design a differentially-private FL algorithm that applies time-varying noise variance perturbation. Taking advantage of existing wireless channel noise, we jointly design differential privacy (DP) noise variances and users transmit power to resolve the tradeoffs between privacy and learning utility. Next, we tackle two critical challenges within FL networks: (i) privacy risks arising from model updates and (ii) reduced learning utility due to quantization heterogeneity. Prior work typically addresses only one of these challenges because maintaining learning utility under both privacy risks and quantization heterogeneity is a non-trivial task. We approach to improve the learning utility of a privacy-preserving FL that allows clusters of devices with different quantization resolutions to participate in each FL round. Specifically, we introduce a novel stochastic quantizer (SQ) that ensures a DP guarantee and minimal quantization distortion. To address quantization heterogeneity, we introduce a cluster size optimization technique combined with a linear fusion approach to enhance model aggregation accuracy. Lastly, inspired by the information-theoretic rate-distortion framework, a privacy-distortion tradeoff problem is formulated to minimize privacy loss under a given maximum allowable quantization distortion. The optimal solution to this problem is identified, revealing that the privacy loss decreases as the maximum allowable quantization distortion increases, and vice versa.

This research advances hybrid array optimization for wideband sub-THz massive MIMO and introduces novel algorithms for privacy-preserving quantized FL with diverse precision. These contributions enable high-throughput wideband MIMO communication systems and privacy-preserving AI-native designs, aligning with the performance and privacy protection demands of NextG networks.