I2S Masters/ Doctoral Theses


All students and faculty are welcome to attend the final defense of I2S graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Liangqin Ren

Understanding and Mitigating Security Risks towards Trustworthy Deep Learning Systems

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

PhD Comprehensive Defense

Committee Members:

Fengjun Li, Chair
Drew Davidson
Bo Luo
Zijun Yao
Xinmai Yang

Abstract

Deep learning is widely used in healthcare, finance, and other critical domains, raising concerns about system trustworthiness. However, deep learning models and data still face three types of critical attacks: model theft, identity impersonation, and abuse of AI-generated content (AIGC). To address model theft, homomorphic encryption has been explored for privacy-preserving inference, but it remains highly inefficient. To counter identity impersonation, prior work focuses on detection, disruption, and tracing—yet fails to protect source and target images simultaneously. To prevent AIGC abuse, methods like evaluation, watermarking, and machine unlearning exist, but text-driven image editing remains largely unprotected.

This report addresses the above challenges through three key designs. First, to enable privacy-preserving inference while accelerating homomorphic encryption, we propose PrivDNN, which selectively encrypts the most critical model parameters, significantly reducing encrypted operations. We design a selection score to evaluate neuron importance and use a greedy algorithm to iteratively secure the most impactful neurons. Across four models and datasets, PrivDNN reduces encrypted operations by 85%–98%, and cuts inference time and memory usage by over 97% while preserving accuracy and privacy. Second, to counter identity impersonation in deepfake face-swapping, where both the source and target can be exploited, we introduce PhantomSeal, which embeds invisible perturbations to encode a hidden “cloak” identity. When used as a target, the resulting content displays visible artifacts; when used as a source, the generated deepfake is altered to resemble the cloak identity. Evaluations across two generations of deepfake face-swapping show that PhantomSeal reduces attack success from 97% to 0.8%, with 95% of outputs recognized as the cloak identity, providing robust protection against manipulation. Third, to prevent AIGC abuse, we construct a comprehensive dataset, perform large-scale human evaluation, and establish a benchmark for detecting AI-generated artwork to better understand abuse risks in AI-generated content. Building on this direction, we propose Protecting Copyright against Image Editing (PCIE) to address copyright infringement in text-driven image editing. PCIE embeds an invisible copyright mark into the original image, which transforms into a visible watermark after text-driven editing to automatically reveal ownership upon unauthorized modification.


Andrew Stratmann

Efficient Index-Based Multi-User Scheduling for Mobile mmWave Networks: Balancing Channel Quality and User Experience

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Thesis Defense

Committee Members:

Morteza Hashemi, Chair
Prasad Kulkarni
Erik Perrins


Abstract

Millimeter Wave (mmWave) communication technologies have the potential to establish high data rates for next-generation wireless networks, as well as enable novel applications that were previously untenable due to high throughput requirements.  Yet reliable and efficient mmWave communication remains challenged by intermittent link quality due to user mobility and frequent line-of-sight (LoS) blockage, thereby making the links unavailable or more costly to use.  These factors are further exacerbated in multi-user settings where beam alignment overhead, limited RF chains, and heterogeneous user requirements must be balanced.  In this work, we present a hybrid multi-user scheduling solution that jointly accounts for mobility-and blockage-induced unavailability to enhance user experience in mmWave video streaming applications.  Our approach integrates two key components: (i) a blockage-aware scheduling strategy modeled via a Restless Multi-Armed Bandit (RMAB) formulation and prioritized using Whittle Indexing, and (ii) a mobility-aware geometric model that estimates beam alignment overhead cost as a function of receiver motion.  We develop a comprehensive and efficient index-based scheduler that fuses these models and leverages contextual information, such as receiver distance, mobility history, and queue state, to schedule multiple users in order to maximize throughput. Simulation results demonstrate that our approach reduces system queue backlog and improves fairness compared to round-robin and traditional index-based baselines.


 


Faris El-Katri

Source Separation using Sparse Bayesian Learning

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Thesis Defense

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
James Stiles


Abstract

Wireless communication in recent decades has allowed for a substantial increase in both the speed and capacity of information which may be transmitted over large distances. However, given the expanding societal needs coupled with a finite available spectrum, the question arises of how to increase the efficiency by which information may be transmitted. One natural answer to this question lies in spectrum sharing—that is, in allowing multiple noncooperative agents to inhabit the same spectrum bands. In order to achieve this, we must be able to reliably separate the desired signals from those of other agents in the background. However, since our agents are noncooperative, we must develop a model-agnostic approach at tackling this problem. For this work, we will consider cohabitation between radar signals and communication signals, with the former being the desired signal and the latter being the noncooperative agent. In order to approach such problems involving highly underdetermined linear systems, we propose utilizing Sparse Bayesian Learning and present our results on selected problems. 


Past Defense Notices

Dates

Bryan Richlinski

Prioritize Program Diversity: Enumerative Synthesis with Entropy Ordering

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Sankha Guria, Chair
Perry Alexander
Drew Davidson
Jennifer Lohoefener

Abstract

Program synthesis is a popular way to create a correct-by-construction program from a user-provided specification. Term enumeration is a leading technique to systematically explore the space of programs by generating terms from a formal grammar. These terms are treated as candidate programs which are tested/verified against the specification for correctness. In order to prioritize candidates more likely to satisfy the specification, enumeration is often ordered by program size or other domain-specific heuristics. However, domain-specific heuristics require expert knowledge, and enumeration by size often leads to terms comprised of frequently repeating symbols that are less likely to satisfy a specification. In this thesis, we build a heuristic that prioritizes term enumeration based on variability of individual symbols in the program, i.e., information entropy of the program. We use this heuristic to order programs in both top-down and bottom-up enumeration. We evaluated our work on a subset of the PBE-String track of the 2017 SyGuS competition benchmarks and compared against size-based enumeration. In top-down enumeration, our entropy heuristic shortens runtime in ~56% of cases and tests fewer programs in ~80% before finding a valid solution. For bottom-up enumeration, our entropy heuristic improves the number of enumerated programs in ~41% of cases before finding a valid solution, without improving the runtime. Our findings suggest that using entropy to prioritize program enumeration is a promising step forward for faster program synthesis.


Elizabeth Wyss

A New Frontier for Software Security: Diving Deep into npm

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Comprehensive Defense

Committee Members:

Drew Davidson, Chair
Alex Bardas
Fengjun Li
Bo Luo
J. Walker

Abstract

Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week. 

However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.

This research provides a deep dive into the npm-centric software supply chain, exploring various facets and phenomena that impact the security of this software supply chain. Such factors include (i) hidden code clones--which obscure provenance and can stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts open-source development practices, and (v) package compromise via malicious updates. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains. 


Yousif Dafalla

Web-Armour: Mitigating Reconnaissance and Vulnerability Scanning with Injecting Scan-Impeding Delays in Web Deployments

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Dissertation Defense

Committee Members:

Alex Bardas, Chair
Drew Davidson
Fengjun Li
Bo Luo
ZJ Wang

Abstract

Scanning hosts on the internet for vulnerable devices and services is a key step in numerous cyberattacks. Previous work has shown that scanning is a widespread phenomenon on the internet and commonly targets web application/server deployments. Given that automated scanning is a crucial step in many cyberattacks, it would be beneficial to make it more difficult for adversaries to perform such activity.

In this work, we propose Web-Armour, a mitigation approach to adversarial reconnaissance and vulnerability scanning of web deployments. The proposed approach relies on injecting scanning impeding delays to infrequently or rarely used portions of a web deployment. Web-Armour has two goals: First, increase the cost for attackers to perform automated reconnaissance and vulnerability scanning; Second, introduce minimal to negligible performance overhead to benign users of the deployment. We evaluate Web-Armour on live environments, operated by real users, and on different controlled (offline) scenarios. We show that Web-Armour can effectively lead to thwarting reconnaissance and internet-wide scanning.


Daniel Herr

Information Theoretic Waveform Design with Application to Physically Realizable Adaptive-on-Transmit Radar

When & Where:


Nichols Hall, Room 129 (Ron Evans Apollo Auditorium)

Degree Type:

PhD Dissertation Defense

Committee Members:

James Stiles, Chair
Christopher Allen
Shannon Blunt
Carl Leuschen
Chris Depcik

Abstract

The fundamental task of a radar system is to utilize the electromagnetic spectrum to sense a scattering environment and generate some estimate from this measurement. This task can be posed as a Bayesian estimation problem of random parameters (the scattering environment) through an imperfect sensor (the radar system). From this viewpoint, metrics such as error covariance and estimator precision (or information) can be leveraged to evaluate and improve the performance of radar systems. Here, physically realizable radar waveforms are designed to maximize the Fisher information (FI) (specifically, a derivative of FI known as marginal Fisher information (MFI)) extracted from a scattering environment thereby minimizing the expected error covariance about an estimation parameter space. This information theoretic framework, along with the high-degree of design flexibility afforded by fully digital transmitter and receiver architectures, creates a high-dimensionality design space for optimizing radar performance.

First, the problem of joint-domain range-Doppler estimation utilizing a pulse-agile radar is posed from an estimation theoretic framework, and the minimum mean square error (MMSE) estimator is shown to suppress the range-sidelobe modulation (RSM) induced by pulse agility which may improve the signal-to-interference-plus-noise ratio (SINR) in signal-limited scenarios. A computationally efficient implementation of the range-Doppler MMSE estimator is developed as a series of range-profile estimation problems, under specific modeling and statistical assumptions. Next, a transformation of the estimation parameterization is introduced which ameliorates the high noise-gain typically associated with traditional MMSE estimation by sacrificing the super-resolution achieved by the MMSE estimator. Then, coordinate descent and gradient descent optimization methods are developed for designing MFI optimal waveforms with respect to either the original or transformed estimation space. These MFI optimal waveforms are extended to provide pulse-agility, which produces high-dimensionality radar emissions amenable to non-traditional receive processing techniques (such as MMSE estimation). Finally, informationally optimal waveform design and optimal estimation are extended into a cognitive radar concept capable of adaptive and dynamic sensing. The efficacy of the MFI waveform design and MMSE estimation are demonstrated via open-air hardware experimentation where their performance is compared against traditional techniques.


Matthew Heintzelman

Spatially Diverse Radar Techniques - Emission Optimization and Enhanced Receive Processing

When & Where:


Nichols Hall, Room 129 (Ron Evans Apollo Auditorium)

Degree Type:

PhD Dissertation Defense

Committee Members:

Shannon Blunt, Chair
Christopher Allen
Patrick McCormick
James Stiles
Zsolt Talata

Abstract

Radar systems perform 3 basic tasks: search/detection, tracking, and imaging. Traditionally, varied operational and hardware requirements have compartmentalized these functions to distinct and specialized radars, which may communicate actionable information between them. Expedited by the growth in computational capabilities modeled by Moore’s law, next-generation radars will be sophisticated, multi-function systems comprising generalized and reprogrammable subsystems. The advance of fully Digital Array Radars (DAR) has enabled the implementation of highly directive phased arrays that can scan, detect, and track scatterers through a volume-of-interest. Conversely, DAR technology has also enabled Multiple-Input Multiple-Output (MIMO) radar methodologies that seek to illuminate all space on transmit, while forming separate but simultaneous, directive beams on receive.

Waveform diversity has been repeatedly proven to enhance radar operation through added Degrees-of-Freedom (DoF) that can be leveraged to expand dynamic range, provide ambiguity resolution, and improve parameter estimation.  In particular, diversity among the DAR’s transmitting elements provides flexibility to the emission, allowing simultaneous multi-function capability. By precise design of the emission, the DAR can utilize the operationally-continuous trade-space between a fully coherent phased array and a fully incoherent MIMO system. This flexibility could enable the optimal management of the radar’s resources, where Signal-to-Noise Ratio (SNR) would be traded for robustness in detection, measurement capability, and tracking.

Waveform diversity is herein leveraged as the predominant enabling technology for multi-function radar emission design. Three methods of emission optimization are considered to design distinct beams in space and frequency, according to classical error minimization techniques. First, a gradient-based optimization of the Space-Frequency Template Error (SFTE) is applied to a high-fidelity model for a wideband array’s far-field emission. Second, a more efficient optimization is considered, based on the SFTE for narrowband arrays. Finally, a suboptimal solution, based on alternating projections, is shown to provide rapidly reconfigurable transmit patterns. To improve the dynamic range observed for MIMO radars employing pulse-agile quasi-orthogonal waveforms, a pulse-compression model is derived that manages to suppress both autocorrelation sidelobes and multi-transmitter-induced cross-correlation. The proposed waveforms and filters are implemented in hardware to demonstrate performance, validate robustness, and reflect real-world application to the degree possible with laboratory experimentation.


Anjana Lamsal

Self-homodyne Coherent Lidar System for Range and Velocity Detection

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Project Defense

Committee Members:

Rongqing Hui, Chair
Alessandro Salandrino
James Stiles


Abstract

Lidar systems are gaining popularity due to their benefits, including high resolution, precise accuracy and scalability. An FMCW lidar based on self-homodyne coherent detection technique is used for range and velocity measurement with a phase diverse coherent receiver. The system employs a self-homodyne detection technique, where a LO signal is derived directly from the same laser source as the transmitted signal and is the same linear chirp as the transmitted signal, thereby minimizing phase noise. A coherent receiver is employed to get in-phase and quadrature components of the photocurrent and to perform de-chirping. Since the LO has the same chirp as the transmitted signal, the mixing process in the photodiodes effectively cancels out the chirp or frequency modulation from the received signal. The spectrum of the de-chirped complex waveform is used to determine the range and velocity of the target. This lidar system simplifies the signal processing by using photodetectors for de-chirping. Additionally, after de-chirping, the resulting signal has a much narrower bandwidth compared to the original chirp signal and signal processing can be performed at lower frequencies.


Michael Neises

VERIAL: Verification-Enabled Runtime Integrity Attestation of Linux

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Dissertation Defense

Committee Members:

Perry Alexander, Chair
Drew Davidson
Cuncong Zhong
Matthew Moore
Michael Murray

Abstract

Runtime attestation is a way to gain confidence in the current state of a remote target.

Layered attestation is a way of extending that confidence from one component to another.

Introspective solutions for layered attestation require strict isolation.

The seL4 is uniquely well-suited to offer kernel properties sufficient to achieve such isolation.

I design, implement, and evaluate introspective measurements and the layered runtime attestation of a Linux kernel hosted by the seL4.

VERIAL can detect diamorphine-style rootkits with performance cost comparable to previous work.

 


Durga Venkata Suraj Tedla

AI DIETICIAN

When & Where:


Zoom (https://kansas.zoom.us/j/84997733219) Meeting ID: 849 9773 3219 Passcode: 980685

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Jennifer Lohoefener


Abstract

The artificially intelligent Dietician Web application is an innovative piece of technology that makes use of artificial intelligence to offer individualised nutritional guidance and assistance. This web application uses advanced machine learning algorithms and natural language processing to provide users with individualized nutritional advice and assistance in meal planning. Users who are interested in improving their eating habits can benefit from this bot. The system collects relevant data about users' dietary choices, as well as information about calories, and provides insights into body mass index (BMI) and basal metabolic rate (BMR) through interactive conversations, resulting in tailored recommendations. To enhance its capacity for prediction, a number of classification methods, including naive Bayes, neural networks, random forests, and support vector machines, were utilised and evaluated. Following an exhaustive analysis, the model that proved to be the most effective random forest is selected for the purpose of incorporating it into the development of the artificial intelligence Dietician Web application. The purpose of this study is to emphasise the significance of the artificial intelligence Dietician Web application as a versatile and intelligent instrument that encourages the adoption of healthy eating habits and empowers users to make intelligent decisions regarding their dietary requirements.


Zeyan Liu

On the Security of Modern AI: Backdoors, Robustness, and Detectability

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Dissertation Defense

Committee Members:

Bo Luo, Chair
Alex Bardas
Fengjun Li
Zijun Yao
John Symons

Abstract

The rapid development of AI has significantly impacted security and privacy, introducing both new cyber-attacks targeting AI models and challenges related to responsible use. As AI models become more widely adopted in real-world applications, attackers exploit adversarially altered samples to manipulate their behaviors and decisions. Simultaneously, the use of generative AI, like ChatGPT, has sparked debates about the integrity of AI-generated content.

In this dissertation, we investigate the security of modern AI systems and the detectability of AI-related threats, focusing on stealthy AI attacks and responsible AI use in academia. First, we reevaluate the stealthiness of 20 state-of-the-art attacks on six benchmark datasets, using 24 image quality metrics and over 30,000 user annotations. Our findings reveal that most attacks introduce noticeable perturbations, failing to remain stealthy. Motivated by this, we propose a novel model-poisoning neural Trojan, LoneNeuron, which minimally modifies the host neural network by adding a single neuron after the first convolution layer. LoneNeuron responds to feature-domain patterns that transform into invisible, sample-specific, and polymorphic pixel-domain watermarks, achieving a 100% attack success rate without compromising main task performance and enhancing stealth and detection resistance. Additionally, we examine the detectability of ChatGPT-generated content in academic writing. Presenting GPABench2, a dataset of over 2.8 million abstracts across various disciplines, we assess existing detection tools and challenges faced by over 240 evaluators. We also develop CheckGPT, a detection framework consisting of an attentive Bi-LSTM and a representation module, to capture subtle semantic and linguistic patterns in ChatGPT-generated text. Extensive experiments validate CheckGPT’s high applicability, transferability, and robustness.


Abishek Doodgaon

Photorealistic Synthetic Data Generation for Deep Learning-based Structural Health Monitoring of Concrete Dams

When & Where:


LEEP2, Room 1415A

Degree Type:

MS Thesis Defense

Committee Members:

Zijun Yao, Chair
Caroline Bennett
Prasad Kulkarni
Remy Lequesne

Abstract

Regular inspections are crucial for identifying and assessing damage in concrete dams, including a wide range of damage states. Manual inspections of dams are often constrained by cost, time, safety, and inaccessibility. Automating dam inspections using artificial intelligence has the potential to improve the efficiency and accuracy of data analysis. Computer vision and deep learning models have proven effective in detecting a variety of damage features using images, but their success relies on the availability of high-quality and diverse training data. This is because supervised learning, a common machine-learning approach for classification problems, uses labeled examples, in which each training data point includes features (damage images) and a corresponding label (pixel annotation). Unfortunately, public datasets of annotated images of concrete dam surfaces are scarce and inconsistent in quality, quantity, and representation.

To address this challenge, we present a novel approach that involves synthesizing a realistic environment using a 3D model of a dam. By overlaying this model with synthetically created photorealistic damage textures, we can render images to generate large and realistic datasets with high-fidelity annotations. Our pipeline uses NX and Blender for 3D model generation and assembly, Substance 3D Designer and Substance Automation Toolkit for texture synthesis and automation, and Unreal Engine 5 for creating a realistic environment and rendering images. This generated synthetic data is then used to train deep learning models in the subsequent steps. The proposed approach offers several advantages. First, it allows generation of large quantities of data that are essential for training accurate deep learning models. Second, the texture synthesis ensures generation of high-fidelity ground truths (annotations) that are crucial for making accurate detections. Lastly, the automation capabilities of the software applications used in this process provides flexibility to generate data with varied textures elements, colors, lighting conditions, and image quality overcoming the constraints of time. Thus, the proposed approach can improve the automation of dam inspection by improving the quality and quantity of training data.