I2S Masters/ Doctoral Theses


All students and faculty are welcome to attend the final defense of I2S graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Ashish Adhikari

Towards assessing the security of program binaries

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Comprehensive Defense

Committee Members:

Prasad Kulkarni, Chair
Alex Bardas
Fengjun Li
Bo Luo

Abstract

Software vulnerabilities are widespread, often resulting from coding weaknesses and poor development practices. These vulnerabilities can be exploited by attackers, posing risks to confidentiality, integrity, and availability. To protect themselves, end-users of software may have an interest in knowing whether the software they purchase, and use is secure from potential attacks. Our work is motivated by this need to automatically assess and rate the security properties of binary software.

While many researchers focus on developing techniques and tools to detect and mitigate vulnerabilities in binaries, our approach is different. We aim to determine whether the software has been developed with proper care. Our hypothesis is that software created with meticulous attention to security is less likely to contain exploitable vulnerabilities. As a first step, we examined the current landscape of binary-level vulnerability detection. We categorized critical coding weaknesses in compiled programming languages and conducted a detailed survey comparing static analysis techniques and tools designed to detect these weaknesses. Additionally, we evaluated the effectiveness of open-source CWE detection tools and analyzed their challenges. To further understand their efficacy, we conducted independent assessments using standard benchmarks.

To determine whether software is carefully and securely developed, we propose several techniques. So far, we have used machine learning and deep learning methods to identify the programming language of a binary at the functional level, enabling us to handle complex cases like mixed-language binaries and we assess whether vulnerable regions in the binary are protected with appropriate security mechanisms. Additionally, we explored the feasibility of detecting secure coding practices by examining adherence to SonarQube’s security-related coding conventions.

Next, we investigate whether compiler warnings generated during binary creation are properly addressed. Furthermore, we also aim to optimize the array bounds detection in the program binary. This enhanced array bounds detection will also increase the effectiveness of detecting secure coding conventions that are related to memory safety and buffer overflow vulnerabilities.

Our ultimate goal is to combine these techniques to rate the overall security quality of a given binary software.


Bayn Schrader

Implementation and Analysis of an Efficient Dual-Beam Radar-Communications Technique

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jonathan Owen


Abstract

Fully digital arrays enable realization of dual-function radar-communications systems which generate multiple simultaneous transmit beams with different modulation structures in different spatial directions. These spatially diverse transmissions are produced by designing the individual wave forms transmitted at each antenna element that combine in the far-field to synthesize the desired modulations at the specified directions. This thesis derives a look-up table (LUT) implementation of the existing Far-Field Radiated Emissions Design (FFRED) optimization framework. This LUT implementation requires a single optimization routine for a set of desired signals, rather than the previous implementation which required pulse-to-pulse optimization, making the LUT approach more efficient. The LUT is generated by representing the waveforms transmitted by each element in the array as a sequence of beamformers, where the LUT contains beamformers based on the phase difference between the desired signal modulations. The globally optimal beamformers, in terms of power efficiency, can be realized via the Lagrange dual problem for most beam locations and powers. The Phase-Attached Radar-Communications (PARC) waveform is selected for the communications waveform alongside a Linear Frequency Modulated (LFM) waveform for the radar signal. A set of FFRED LUTs are then used to simulate a radar transmission to verify the utility of the radar system. The same LUTs are then used to estimate the communications performance of a system with varying levels of the array knowledge uncertainty.


Will Thomas

Static Analysis and Synthesis of Layered Attestation Protocols

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Comprehensive Defense

Committee Members:

Perry Alexander, Chair
Alex Bardas
Drew Davidson
Sankha Guria
Eileen Nutting

Abstract

Trust is a fundamental issue in computer security. Frequently, systems implicitly trust in other
systems, especially if configured by the same administrator. This fallacious reasoning stems from the belief
that systems starting from a known, presumably good, state can be trusted. However, this statement only
holds for boot-time behavior; most non-trivial systems change state over time, and thus runtime behavior is
an important, oft-overlooked aspect of implicit trust in system security.

To address this, attestation was developed, allowing a system to provide evidence of its runtime behavior to a
verifier. This evidence allows a verifier to make an explicit informed decision about the system’s trustworthiness.
As systems grow more complex, scalable attestation mechanisms become increasingly important. To apply
attestation to non-trivial systems, layered attestation was introduced, allowing attestation of individual
components or layers, combined into a unified report about overall system behavior. This approach enables
more granular trust assessments and facilitates attestation in complex, multi-layered architectures. With the
complexity of layered attestation, discerning whether a given protocol is sufficiently measuring a system, is
executable, or if all measurements are properly reported, becomes increasingly challenging.

In this work, we will develop a framework for the static analysis and synthesis of layered attestation protocols,
enabling more robust and adaptable attestation mechanisms for dynamic systems. A key focus will be the
static verification of protocol correctness, ensuring the protocol behaves as intended and provides reliable
evidence of the underlying system state. A type system will be added to the Copland layered attestation
protocol description language to allow basic static checks, and extended static analysis techniques will be
developed to verify more complex properties of protocols for a specific target system. Further, protocol
synthesis will be explored, enabling the automatic generation of correct-by-construction protocols tailored to
system requirements.


David Felton

Optimization and Evaluation of Physical Complementary Radar Waveforms

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Comprehensive Defense

Committee Members:

Shannon Blunt, Chair
Rachel Jarvis
Patrick McCormick
James Stiles
Zsolt Talata

Abstract

In high dynamic-range environments, matched-filter radar performance is often sidelobe-limited with correlation error being fundamentally constrained by the TB of the collective emission. To contend with the regulatory necessity of spectral containment, the gradient-based complementary-FM framework was developed to produce complementary sidelobe cancellation (CSC) after coherently combining responses from distinct pulses from within a pulse-agile emission. In contrast to most complementary subsets, which were discovered via brute force under the notion of phase-coding, these comp-FM waveform subsets achieve CSC while preserving hardware compatibility since they are FM. Although comp-FM addressed a primary limitation of complementary signals (i.e., hardware distortion), CSC hinges on the exact reconstruction of autocorrelation terms to suppress sidelobes, from which optimality is broken for Doppler shifted signals. This work introduces a Doppler-generalized comp-FM (DG-comp-FM) framework that extends the cancellation condition to account for the anticipated unambiguous Doppler span after post-summing. While this framework is developed for use within a combine-before-Doppler processing manner, it can likewise be employed to design an entire coherent processing interval (CPI) to minimize range-sidelobe modulation (RSM) within the radar point-spread-function (PSF), thereby introducing the potential for cognitive operation if sufficient scattering knowledge is available a-priori. 

Some radar systems operate with multiple emitters, as in the case of Multiple-input-multiple-output (MIMO) radar. Whereas a single emitter must contend with the self-inflicted autocorrelation sidelobes, MIMO systems must likewise contend with the cross-correlation with coincident (in time and spectrum) emissions from other emitters. As such, the determination of "orthogonal waveforms" comprises a large portion of research within the MIMO space, with a small majority now recognizing that true orthogonality is not possible for band-limited signals (albeit, with the exclusion of TDMA). The notion of complementary-FM is proposed for exploration within a MIMO context, whereby coherently combining responses can achieve CSC as well as cross-correlation cancellation for a wide Doppler space. By effectively minimizing cross-correlation terms, this enables improved channel separation on receive as well as improved estimation capability due to reduced correlation error. Proposal items include further exploration/characterization of the space, incorporating an explicit spectral.


Jigyas Sharma

SEDPD: Sampling-Enhanced Differentially Private Defense against Backdoor Poisoning Attacks of Image Classification

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Han Wang, Chair
Drew Davidson
Dongjie Wang


Abstract

Recent advancements in explainable artificial intelligence (XAI) have brought significant transparency to machine learning by providing interpretable explanations alongside model predictions. However, this transparency has also introduced vulnerabilities, enhancing adversaries’ ability for the model decision processes through explanation-guided attacks. In this paper, we propose a robust, model-agnostic defense framework to mitigate these vulnerabilities by explanations while preserving the utility of XAI. Our framework employs a multinomial sampling approach that perturbs explanation values generated by techniques such as SHAP and LIME. These perturbations ensure differential privacy (DP) bounds, disrupting adversarial attempts to embed malicious triggers while maintaining explanation quality for legitimate users. To validate our defense, we introduce a threat model tailored to image classification tasks. By applying our defense framework, we train models with pixel-sampling strategies that integrate DP guarantees, enhancing robustness against backdoor poisoning attacks with XAI. Extensive experiments on widely used datasets, such as CIFAR-10, MNIST, CIFAR-100 and Imagenette, and models, including ConvMixer and ResNet-50, show that our approach effectively mitigates explanation-guided attacks without compromising the accuracy of the model. We also test our defense performance against other backdoor attacks, which shows our defense framework can detect other type backdoor triggers very well. This work highlights the potential of DP in securing XAI systems and ensures safer deployment of machine learning models in real-world applications.


Dimple Galla

Intelligent Application for Cold Email Generation: Business Outreach

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

Cold emailing remains an effective strategy for software service companies to improve organizational reach by acquiring clients. Generic emails often fail to get a response.

This project leverages Generative AI to automate the cold email generation. This project is built with the Llama-3.1 model and a Chroma vector database that supports the semantic search of keywords in the job description that matches the project portfolio links of software service companies. The application automatically extracts the technology related job openings for Fortune 500 companies. Users can either select from these extracted job postings or manually enter URL of a job posting, after which the system generates email and sends email upon approval. Advanced techniques like Chain-of-Thought Prompting and Few-Shot Learning were applied to improve the relevance making the email more responsive. This AI driven approach improves engagement and simplifies the business development process for software service companies.


Past Defense Notices

Dates

Soma Pal

Truths about compiler optimization for state-of-the-art (SOTA) C/C++ compilers

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Comprehensive Defense

Committee Members:

Prasad Kulkami, Chair
Esam El-Araby
Drew Davidson
Tamzidul Hoque
Jian Yunfeng

Abstract

Compiler optimizations are critical for performance and have been extensively studied, especially for C/C++ language compilers. Our overall goal in this thesis is to investigate and compare the properties and behavior of optimization passes across multiple contemporary, state-of-the-art (SOTA)  C/C++ compilers to understand if they adopt similar optimization implementation and orchestration strategies. Given the maturity of pre-existing knowledge in the field, it seems conceivable that different compiler teams will adopt consistent optimization passes, pipeline and application techniques. However, our preliminary results indicate that such expectation may be misguided. If so, then we will attempt to understand the differences, and study and quantify their impact on the performance of generated code.

In our first work, we study and compare the behavior of profile-guided optimizations (PGO) in two popular SOTA C/C++ compilers, GCC and Clang. This study reveals many interesting, and several counter-intuitive, properties about PGOs in C/C++ compilers. The behavior and benefits of PGOs also vary significantly across our selected compilers. We present our observations, along with plans to further explore these inconsistencies in this report. Likewise, we have also measured noticeable differences in the performance delivered by optimizations across our compilers. We propose to explore and understand these differences in this work. We present further details regarding our proposed directions and planned experiments in this report. We hope that this work will show and suggest opportunities for compilers to learn from each other and motivate researchers to find mechanisms to combine the benefits of multiple compilers to deliver higher overall program performance.


Nyamtulla Shaik

AI Vision to Care: A QuadView of Deep Learning for Detecting Harmful Stimming in Autism

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Thesis Defense

Committee Members:

Sumaiya Shomaji, Chair
Bo Luo
Dongjie Wang


Abstract

Stimming refers to repetitive actions or behaviors used to regulate sensory input or express feelings. Children with developmental disorders like autism (ASD) frequently perform stimming. This includes arm flapping, head banging, finger flicking, spinning, etc. This is exhibited by 80-90% of children with Autism, which is seen in 1 among 36 children in the US. Head banging is one of these self-stimulatory habits that can be harmful. If these behaviors are automatically identified and notified using live video monitoring, parents and other caregivers can better watch over and assist children with ASD.

Classifying these actions is important to recognize harmful stimming, so this study focuses on developing a deep learning-based approach for stimming action recognition. We implemented and evaluated four models leveraging three deep learning architectures based on Convolutional Neural Networks (CNNs), Autoencoders, and Vision Transformers. For the first time in this area, we use skeletal joints extracted from video sequences. Previous works relied solely on raw RGB videos, vulnerable to lighting and environmental changes. This research explores Deep Learning based skeletal action recognition and data processing techniques for a small unstructured dataset that consists of 89 home recorded videos collected from publicly available sources like YouTube. Our robust data cleaning and pre-processing techniques helped the integration of skeletal data in stimming action recognition, which performed better than state-of-the-art with a classification accuracy of up to 87%.

In addition to using traditional deep learning models like CNNs for action recognition, this study is among the first to apply data-hungry models like Vision Transformers (ViTs) and Autoencoders for stimming action recognition on the dataset. The results prove that using skeletal data reduces the processing time and significantly improves action recognition, promising a real-time approach for video monitoring applications. This research advances the development of automated systems that can assist caregivers in more efficiently tracking stimming activities.
 


Alexander Rodolfo Lara

Creating a Faradaic Efficiency Graph Dataset Using Machine Learning

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

Zijun Yao, Chair
Sumaiya Shomaji
Kevin Leonard


Abstract

Just as the internet-of-things leverages machine learning over a vast amount of data produced by an innumerable number of sensors, the Internet of Catalysis program uses similar strategies with catalysis research. One application of the Internet of Catalysis strategy is treating research papers as datapoints, rich with text, figures, and tables. Prior research within the program focused on machine learning models applied strictly over text.This project is the first step of the program in creating a machine learning model from the images of catalysis research papers. Specifically, this project creates a dataset of faradaic efficiency graphs using transfer learning from pretrained models. The project utilizes FasterRCNN_ResNet50_FPN, LayoutLMv3SequenceClassification, and computer vision techniques to recognize figures, extract all graphs, then classify the faradaic efficiency graphs.

Downstream of this project, researchers will create a graph reading model to integrate with large language models. This could potentially lead to a multimodal model capable of fully learning from images, tables, and texts of catalysis research papers. Such a model could then guide experimentation on reaction conditions, catalysts, and production.


Amin Shojaei

Scalable and Cooperative Multi-Agent Reinforcement Learning for Networked Cyber-Physical Systems: Applications in Smart Grids

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Dissertation Defense

Committee Members:

Morteza Hashemi, Chair
Alex Bardas
Prasad Kulkarni
Taejoon Kim
Shawn Keshmiri

Abstract

Significant advances in information and networking technologies have transformed Cyber-Physical Systems (CPS) into networked cyber-physical systems (NCPS). A noteworthy example of such systems is smart grid networks, which include distributed energy resources (DERs), renewable generation, and the widespread adoption of Electric Vehicles (EVs). Such complex NCPS require intelligent and autonomous control solutions. For example, the increasing number of EVs introduces significant sources of demand and user behavior uncertainty that can jeopardize grid stability during peak hours. Traditional model-based demand-supply controls fail to accurately model and capture the complex nature of smart grid systems in the presence of different uncertainties and as the system size grows. To address these challenges, data-driven approaches have emerged as an effective solution for informed decision-making, predictive modeling, and adaptive control to enhance the resiliency of NCPS in uncertain environments.

As a powerful data-driven approach, Multi-Agent Reinforcement Learning (MARL) enables agents to learn and adapt in dynamic and uncertain environments. However, MARL techniques introduce complexities related to communication, coordination, and synchronization among agents. In this PhD research, we investigate autonomous control for smart grid decision networks using MARL. First, we examine the issue of imperfect state information, which frequently arises due to the inherent uncertainties and limitations in observing the system state.

Second, we focus on the cooperative behavior of agents in distributed MARL frameworks, particularly under the central training with decentralized execution (CTDE) paradigm. We provide theoretical results and variance analysis for stochastic and deterministic cooperative MARL algorithms, including Multi-Agent Deep Deterministic Policy Gradient (MADDPG), Multi-Agent Proximal Policy Optimization (MAPPO), and Dueling MAPPO. These analyses highlight how coordinated learning can improve system-wide decision-making in uncertain and dynamic environments like EV networks.

Third, we address the scalability challenge in large-scale NCPS by introducing a hierarchical MARL framework based on a cluster-based architecture. This framework organizes agents into coordinated subgroups, improving scalability while preserving local coordination. We conduct a detailed variance analysis of this approach to demonstrate its effectiveness in reducing communication overhead and learning complexity. This analysis establishes a theoretical foundation for scalable and efficient control in large-scale smart grid applications.


Asrith Gudivada

Custom CNN for Object State Classification in Robotic Cooking

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents the development of a custom Convolutional Neural Network (CNN) designed to classify object states—such as sliced, diced, or peeled—in robotic cooking environments. Recognizing fine-grained object states is critical for context-aware manipulation yet remains a challenging task due to the visual similarity between states and the limited availability of cooking-specific datasets. To address these challenges, we built a lightweight, non-pretrained CNN trained on a curated dataset of 11 object states. Starting with a baseline architecture, we progressively enhanced the model using data augmentation, optimized dropout, batch normalization, Inception modules, and residual connections. These improvements led to a performance increase from ~45% to ~52% test accuracy. The final model demonstrates improved generalization and training stability, showcasing the effectiveness of combining classical and advanced deep learning techniques. This work contributes toward real-time state recognition for autonomous robotic cooking systems, with implications for assistive technologies in domestic and elder care settings.


 


Hara Madhav Talasila

Radiometric Calibration of Radar Depth Sounder Data Products

When & Where:


Nichols Hall, Room 317 (Richard K. Moore Conference Room)

Degree Type:

PhD Dissertation Defense

Committee Members:

Carl Leuschen, Chair
Patrick McCormick
James Stiles
Jilu Li
Leah Stearns

Abstract

Although the Center for Remote Sensing of Ice Sheets (CReSIS) performs several radar calibration steps to produce Operation IceBridge (OIB) radar depth sounder data products, these datasets are not radiometrically calibrated and the swath array processing uses ideal (rather than measured [calibrated]) steering vectors. Any errors in the steering vectors, which describe the response of the radar as a function of arrival angle, will lead to errors in positioning and backscatter that subsequently affect estimates of basal conditions, ice thickness, and radar attenuation. Scientific applications that estimate physical characteristics of surface and subsurface targets from the backscatter are limited with the current data because it is not absolutely calibrated. Moreover, changes in instrument hardware and processing methods for OIB over the last decade affect the quality of inter-seasonal comparisons. Recent methods which interpret basal conditions and calculate radar attenuation using CReSIS OIB 2D radar depth sounder echograms are forced to use relative scattering power, rather than absolute methods.

As an active target calibration is not possible for past field seasons, a method that uses natural targets will be developed. Unsaturated natural target returns from smooth sea-ice leads or lakes are imaged in many datasets and have known scattering responses. The proposed method forms a system of linear equations with the recorded scattering signatures from these known targets, scattering signatures from crossing flight paths, and the radiometric correction terms. A least squares solution to optimize the radiometric correction terms is calculated, which minimizes the error function representing the mismatch in expected and measured scattering. The new correction terms will be used to correct the remaining mission data. The radar depth sounder data from all OIB campaigns can be reprocessed to produce absolutely calibrated echograms for the Arctic and Antarctic. A software simulator will be developed to study calibration errors and verify the calibration software. The software for processing natural targets and crossovers will be made available in CReSIS’s open-source polar radar software toolbox. The OIB data will be reprocessed with new calibration terms, providing to the data user community a complete set of radiometrically calibrated radar echograms for the CReSIS OIB radar depth sounder for the first time.


Christopher Ord

A Hardware-Agnostic Simultaneous Transmit And Receive (STAR) Architecture for the Transmission of Non-Repeating FMCW Waveforms

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Rachel Jarvis, Chair
Shannon Blunt
Patrick McCormick


Abstract

With the increasing congestion of the usable RF spectrum, it is increasingly necessary for communication and radar systems to share the same frequencies without disturbing one another. To accomplish this, research has focused on designing a class of non-repeating radar waveforms that appear as noise at the receiver of uncooperative systems, but the peak power from high-power pulsed systems can still overwhelm nearby in-band systems. Therefore, to minimize peak power while maximizing the total energy on target, radar systems must transition to operating at a 100% duty cycle, which inherently requires Simultaneous Transmit and Receive (STAR) operation.

One inherent difficulty when operating monostatic STAR systems is the direct path coupling interference that can saturate a number of components in the radar’s receive chain, which makes digital processing methods that remove this interference ineffective. This thesis proposes a method to reduce the self-interference between the radar’s transmitter in receiver prior to the receiver’s sensitive components to increase the power that the radar can transmit at. By using a combination of tests that manipulate the timing, phase, and magnitude of a secondary waveform that is injected into the radar just before the receiver, upwards of 35.0 dB of self-interference cancellation is achieved for radar waveforms with bandwidths of up to 100 MHz at both S-band and X-band in both simulation and open-air testing.


Fatima Al-Shaikhli

Optical Fiber Measurements: Leveraging Coherent FMCW Techniques

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Comprehensive Defense

Committee Members:

Rongqing Hui, Chair
Shannon Blunt
Shima Fardad
Alessandro Saladrino
Judy Wu

Abstract

Recent advancements in optical fiber technology have proven to be invaluable in a variety of fields, extending far beyond high-speed communications. These innovations enable optical fiber sensing, which plays a critical role across diverse applications, from medical diagnostics to infrastructure monitoring and automotive systems. This research focuses on leveraging commercially available coherent optical transceiver systems to develop novel measurement techniques for characterizing optical fiber properties. Specifically, our goal is to leverage a digitally chirped frequency-modulated continuous wave (FMCW) to extract detailed information about optical fiber characteristics, as well as target range. Through this approach, we aim to enable more accurate and fast assessments of fiber performance and integrity, while exploring the potential for utilizing existing optical communication networks to enhance fiber characterization capabilities. This goal is investigated through three distinct projects: (1) fiber type characterization based on intensity-modulated electrostriction response, (2) self-homodyne coherent Light Detection and Ranging (LiDAR) system for target range and velocity detection, and (3) birefringence measurements using a coherent Polarization-sensitive Optical Frequency Domain Reflectometer (OFDR) system.

Electrostriction in an optical fiber is introduced by interaction between the forward propagated optical signal and the acoustic standing waves in the radial direction resonating between the center of the core and the cladding circumference of the fiber. The response of electrostriction is dependent on fiber parameters, especially the mode field radius. We demonstrated a novel technique of identifying fiber types through the measurement of intensity modulation induced electrostriction response. As the spectral envelope of electrostriction induced propagation loss is anti-symmetrical, the signal to noise ratio can be significantly increased by subtracting the measured spectrum from its complex conjugate. We show that if the field distribution of the fiber propagation mode is Gaussian, the envelope of the electrostriction-induced loss spectrum closely follows a Maxwellian distribution whose shape can be specified by a single parameter determined by the mode field radius.         
We also present a self-homodyne FMCW LiDAR system based on a coherent receiver. By using the same linearly chirped waveform for both the LiDAR signal and the local oscillator, the self-homodyne coherent receiver performs frequency de-chirping directly in the photodiodes, significantly simplifying signal processing. As a result, the required receiver bandwidth is much lower than the chirping bandwidth of the signal. Multi-target detection is demonstrated experimentally, and while only amplitude modulation is required in the LiDAR transmitter, the phase-diversity coherent receiver enables simultaneous detection of both range and velocity for each target, along with the sign Image of the target’s velocity.

In addition, we demonstrate a polarization-sensitive OFDR system utilizing a commercially available digital coherent optical transceiver to generate a linear frequency chirp via carrier-suppressed single-sideband modulation. This method ensures linearity in chirping and phase continuity of the optical carrier. The coherent homodyne receiver, incorporating both polarization and phase diversity, recovers the state of polarization (SOP) of the backscattered optical signal along the fiber, mixing with an identically chirped local oscillator. With a spatial resolution of approximately Image, a Image chirping bandwidth, and a Image measurement time, this system enables precise birefringence measurements. By employing three mutually orthogonal SOPs of the launched optical signal, we can measure birefringence vectors Image along the fiber, providing not only the magnitude of birefringence but also the direction of any external pressure applied to the fiber.


Landen Doty

Assessing the Effects of Source Language on Binary Similarity Tools

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Thesis Defense

Committee Members:

Prasad Kulkarni, Chair
Perry Alexander
Alex Bardas
Drew Davidson

Abstract

Binary similarity is a fundamental technique that enables software analysis practitioners to compare machine-level code at scale and with fine granularity. With application in software reverse engineering, vulnerability research, malware attribution and more, state-of-the-art binary similarity tools have undergone thorough research and development to account for variations in compilers, optimizations, machine architectures, and even obfuscations. And, although these tools aim to compare and detect binary-level code segments generated from similar or identical source code, no preexisting work has investigated the effects of source languages other than C and C++. This thesis addresses this research gap by presenting a thorough investigation of SOTA binary similarity tools when applied to modern compiled languages, Rust and Golang.

To adequately evaluate the capabilities of the available binary similarity approaches, this work includes three distinct tools - BSim, a new component of the Ghidra Software Reverse Engineering Framework, which utilizes a clustering based similarity mechanism; BinDiff, an industry-recognized tool using graph-based comparisons; and jTrans, a BERT-based model fine-tuned to the binary similarity task. First, to enable this work, we introduce a new dataset of Rust and Golang binaries compiled from leading open-source projects in the Homebrew and Arch Linux repositories. Comprised of 800 binaries and over 1 million functions, this dataset was built to represent a broad range of implementation styles, application diversity, and source language features. Next, the main investigation of this thesis is presented wherein we asses each approach's ability to accurately report semantically equivalent functions compiled from the same source code. Results across the three tools reveal a systematic degradation of precision when comparing binaries produced by Rust and Go rather than those produced by C and C++. Finally, we provide a technical demonstration which highlights the implications of these results and discuss near- and long-term solutions to more adequately equip binary analysis practitioners.  


Liangqin Ren

Understanding and Mitigating Security Risks towards Trustworthy Deep Learning Systems

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

PhD Comprehensive Defense

Committee Members:

Fengjun Li, Chair
Drew Davidson
Bo Luo
Zijun Yao
Xinmai Yang

Abstract

Deep learning is widely used in healthcare, finance, and other critical domains, raising concerns about system trustworthiness. However, deep learning models and data still face three types of critical attacks: model theft, identity impersonation, and abuse of AI-generated content (AIGC). To address model theft, homomorphic encryption has been explored for privacy-preserving inference, but it remains highly inefficient. To counter identity impersonation, prior work focuses on detection, disruption, and tracing—yet fails to protect source and target images simultaneously. To prevent AIGC abuse, methods like evaluation, watermarking, and machine unlearning exist, but text-driven image editing remains largely unprotected.

This report addresses the above challenges through three key designs. First, to enable privacy-preserving inference while accelerating homomorphic encryption, we propose PrivDNN, which selectively encrypts the most critical model parameters, significantly reducing encrypted operations. We design a selection score to evaluate neuron importance and use a greedy algorithm to iteratively secure the most impactful neurons. Across four models and datasets, PrivDNN reduces encrypted operations by 85%–98%, and cuts inference time and memory usage by over 97% while preserving accuracy and privacy. Second, to counter identity impersonation in deepfake face-swapping, where both the source and target can be exploited, we introduce PhantomSeal, which embeds invisible perturbations to encode a hidden “cloak” identity. When used as a target, the resulting content displays visible artifacts; when used as a source, the generated deepfake is altered to resemble the cloak identity. Evaluations across two generations of deepfake face-swapping show that PhantomSeal reduces attack success from 97% to 0.8%, with 95% of outputs recognized as the cloak identity, providing robust protection against manipulation. Third, to prevent AIGC abuse, we construct a comprehensive dataset, perform large-scale human evaluation, and establish a benchmark for detecting AI-generated artwork to better understand abuse risks in AI-generated content. Building on this direction, we propose Protecting Copyright against Image Editing (PCIE) to address copyright infringement in text-driven image editing. PCIE embeds an invisible copyright mark into the original image, which transforms into a visible watermark after text-driven editing to automatically reveal ownership upon unauthorized modification.