I2S Masters/ Doctoral Theses


All students and faculty are welcome to attend the final defense of I2S graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Ashish Adhikari

Towards assessing the security of program binaries

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Comprehensive Defense

Committee Members:

Prasad Kulkarni, Chair
Alex Bardas
Fengjun Li
Bo Luo

Abstract

Software vulnerabilities are widespread, often resulting from coding weaknesses and poor development practices. These vulnerabilities can be exploited by attackers, posing risks to confidentiality, integrity, and availability. To protect themselves, end-users of software may have an interest in knowing whether the software they purchase, and use is secure from potential attacks. Our work is motivated by this need to automatically assess and rate the security properties of binary software.

While many researchers focus on developing techniques and tools to detect and mitigate vulnerabilities in binaries, our approach is different. We aim to determine whether the software has been developed with proper care. Our hypothesis is that software created with meticulous attention to security is less likely to contain exploitable vulnerabilities. As a first step, we examined the current landscape of binary-level vulnerability detection. We categorized critical coding weaknesses in compiled programming languages and conducted a detailed survey comparing static analysis techniques and tools designed to detect these weaknesses. Additionally, we evaluated the effectiveness of open-source CWE detection tools and analyzed their challenges. To further understand their efficacy, we conducted independent assessments using standard benchmarks.

To determine whether software is carefully and securely developed, we propose several techniques. So far, we have used machine learning and deep learning methods to identify the programming language of a binary at the functional level, enabling us to handle complex cases like mixed-language binaries and we assess whether vulnerable regions in the binary are protected with appropriate security mechanisms. Additionally, we explored the feasibility of detecting secure coding practices by examining adherence to SonarQube’s security-related coding conventions.

Next, we investigate whether compiler warnings generated during binary creation are properly addressed. Furthermore, we also aim to optimize the array bounds detection in the program binary. This enhanced array bounds detection will also increase the effectiveness of detecting secure coding conventions that are related to memory safety and buffer overflow vulnerabilities.

Our ultimate goal is to combine these techniques to rate the overall security quality of a given binary software.


Bayn Schrader

Implementation and Analysis of an Efficient Dual-Beam Radar-Communications Technique

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jonathan Owen


Abstract

Fully digital arrays enable realization of dual-function radar-communications systems which generate multiple simultaneous transmit beams with different modulation structures in different spatial directions. These spatially diverse transmissions are produced by designing the individual wave forms transmitted at each antenna element that combine in the far-field to synthesize the desired modulations at the specified directions. This thesis derives a look-up table (LUT) implementation of the existing Far-Field Radiated Emissions Design (FFRED) optimization framework. This LUT implementation requires a single optimization routine for a set of desired signals, rather than the previous implementation which required pulse-to-pulse optimization, making the LUT approach more efficient. The LUT is generated by representing the waveforms transmitted by each element in the array as a sequence of beamformers, where the LUT contains beamformers based on the phase difference between the desired signal modulations. The globally optimal beamformers, in terms of power efficiency, can be realized via the Lagrange dual problem for most beam locations and powers. The Phase-Attached Radar-Communications (PARC) waveform is selected for the communications waveform alongside a Linear Frequency Modulated (LFM) waveform for the radar signal. A set of FFRED LUTs are then used to simulate a radar transmission to verify the utility of the radar system. The same LUTs are then used to estimate the communications performance of a system with varying levels of the array knowledge uncertainty.


Will Thomas

Static Analysis and Synthesis of Layered Attestation Protocols

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Comprehensive Defense

Committee Members:

Perry Alexander, Chair
Alex Bardas
Drew Davidson
Sankha Guria
Eileen Nutting

Abstract

Trust is a fundamental issue in computer security. Frequently, systems implicitly trust in other
systems, especially if configured by the same administrator. This fallacious reasoning stems from the belief
that systems starting from a known, presumably good, state can be trusted. However, this statement only
holds for boot-time behavior; most non-trivial systems change state over time, and thus runtime behavior is
an important, oft-overlooked aspect of implicit trust in system security.

To address this, attestation was developed, allowing a system to provide evidence of its runtime behavior to a
verifier. This evidence allows a verifier to make an explicit informed decision about the system’s trustworthiness.
As systems grow more complex, scalable attestation mechanisms become increasingly important. To apply
attestation to non-trivial systems, layered attestation was introduced, allowing attestation of individual
components or layers, combined into a unified report about overall system behavior. This approach enables
more granular trust assessments and facilitates attestation in complex, multi-layered architectures. With the
complexity of layered attestation, discerning whether a given protocol is sufficiently measuring a system, is
executable, or if all measurements are properly reported, becomes increasingly challenging.

In this work, we will develop a framework for the static analysis and synthesis of layered attestation protocols,
enabling more robust and adaptable attestation mechanisms for dynamic systems. A key focus will be the
static verification of protocol correctness, ensuring the protocol behaves as intended and provides reliable
evidence of the underlying system state. A type system will be added to the Copland layered attestation
protocol description language to allow basic static checks, and extended static analysis techniques will be
developed to verify more complex properties of protocols for a specific target system. Further, protocol
synthesis will be explored, enabling the automatic generation of correct-by-construction protocols tailored to
system requirements.


David Felton

Optimization and Evaluation of Physical Complementary Radar Waveforms

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Comprehensive Defense

Committee Members:

Shannon Blunt, Chair
Rachel Jarvis
Patrick McCormick
James Stiles
Zsolt Talata

Abstract

In high dynamic-range environments, matched-filter radar performance is often sidelobe-limited with correlation error being fundamentally constrained by the TB of the collective emission. To contend with the regulatory necessity of spectral containment, the gradient-based complementary-FM framework was developed to produce complementary sidelobe cancellation (CSC) after coherently combining responses from distinct pulses from within a pulse-agile emission. In contrast to most complementary subsets, which were discovered via brute force under the notion of phase-coding, these comp-FM waveform subsets achieve CSC while preserving hardware compatibility since they are FM. Although comp-FM addressed a primary limitation of complementary signals (i.e., hardware distortion), CSC hinges on the exact reconstruction of autocorrelation terms to suppress sidelobes, from which optimality is broken for Doppler shifted signals. This work introduces a Doppler-generalized comp-FM (DG-comp-FM) framework that extends the cancellation condition to account for the anticipated unambiguous Doppler span after post-summing. While this framework is developed for use within a combine-before-Doppler processing manner, it can likewise be employed to design an entire coherent processing interval (CPI) to minimize range-sidelobe modulation (RSM) within the radar point-spread-function (PSF), thereby introducing the potential for cognitive operation if sufficient scattering knowledge is available a-priori. 

Some radar systems operate with multiple emitters, as in the case of Multiple-input-multiple-output (MIMO) radar. Whereas a single emitter must contend with the self-inflicted autocorrelation sidelobes, MIMO systems must likewise contend with the cross-correlation with coincident (in time and spectrum) emissions from other emitters. As such, the determination of "orthogonal waveforms" comprises a large portion of research within the MIMO space, with a small majority now recognizing that true orthogonality is not possible for band-limited signals (albeit, with the exclusion of TDMA). The notion of complementary-FM is proposed for exploration within a MIMO context, whereby coherently combining responses can achieve CSC as well as cross-correlation cancellation for a wide Doppler space. By effectively minimizing cross-correlation terms, this enables improved channel separation on receive as well as improved estimation capability due to reduced correlation error. Proposal items include further exploration/characterization of the space, incorporating an explicit spectral.


Jigyas Sharma

SEDPD: Sampling-Enhanced Differentially Private Defense against Backdoor Poisoning Attacks of Image Classification

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Han Wang, Chair
Drew Davidson
Dongjie Wang


Abstract

Recent advancements in explainable artificial intelligence (XAI) have brought significant transparency to machine learning by providing interpretable explanations alongside model predictions. However, this transparency has also introduced vulnerabilities, enhancing adversaries’ ability for the model decision processes through explanation-guided attacks. In this paper, we propose a robust, model-agnostic defense framework to mitigate these vulnerabilities by explanations while preserving the utility of XAI. Our framework employs a multinomial sampling approach that perturbs explanation values generated by techniques such as SHAP and LIME. These perturbations ensure differential privacy (DP) bounds, disrupting adversarial attempts to embed malicious triggers while maintaining explanation quality for legitimate users. To validate our defense, we introduce a threat model tailored to image classification tasks. By applying our defense framework, we train models with pixel-sampling strategies that integrate DP guarantees, enhancing robustness against backdoor poisoning attacks with XAI. Extensive experiments on widely used datasets, such as CIFAR-10, MNIST, CIFAR-100 and Imagenette, and models, including ConvMixer and ResNet-50, show that our approach effectively mitigates explanation-guided attacks without compromising the accuracy of the model. We also test our defense performance against other backdoor attacks, which shows our defense framework can detect other type backdoor triggers very well. This work highlights the potential of DP in securing XAI systems and ensures safer deployment of machine learning models in real-world applications.


Dimple Galla

Intelligent Application for Cold Email Generation: Business Outreach

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

Cold emailing remains an effective strategy for software service companies to improve organizational reach by acquiring clients. Generic emails often fail to get a response.

This project leverages Generative AI to automate the cold email generation. This project is built with the Llama-3.1 model and a Chroma vector database that supports the semantic search of keywords in the job description that matches the project portfolio links of software service companies. The application automatically extracts the technology related job openings for Fortune 500 companies. Users can either select from these extracted job postings or manually enter URL of a job posting, after which the system generates email and sends email upon approval. Advanced techniques like Chain-of-Thought Prompting and Few-Shot Learning were applied to improve the relevance making the email more responsive. This AI driven approach improves engagement and simplifies the business development process for software service companies.


Past Defense Notices

Dates

Venkata Sai Krishna Chaitanya Addepalli

A Comprehensive Approach to Facial Emotion Recognition: Integrating Established Techniques with a Tailored Model

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Hongyang Sun


Abstract

Facial emotion recognition has become a pivotal application of machine learning, enabling advancements in human-computer interaction, behavioral analysis, and mental health monitoring. Despite its potential, challenges such as data imbalance, variation in expressions, and noisy datasets often hinder accurate prediction.

This project presents a novel approach to facial emotion recognition by integrating established techniques like data augmentation and regularization with a tailored convolutional neural network (CNN) architecture. Using the FER2013 dataset, the study explores the impact of incremental architectural improvements, optimized hyperparameters, and dropout layers to enhance model performance.

The proposed model effectively addresses issues related to data imbalance and overfitting while achieving enhanced accuracy and precision in emotion classification. The study underscores the importance of feature extraction through convolutional layers and optimized fully connected networks for efficient emotion recognition. The results demonstrate improvements in generalization, setting a foundation for future real-time applications in diverse fields.


Tejarsha Arigila

Benchmarking Aggregation Free Federated Learning using Data Condensation: Comparison with Federated Averaging

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

Fengjun Li, Chair
Bo Luo
Sumaiya Shomaji


Abstract

This project investigates the performance of Federated Learning Aggregation-Free (FedAF) compared to traditional federated learning methods under non-independent and identically distributed (non-IID) data conditions, characterized by Dirichlet distribution parameters (alpha = 0.02, 0.05, 0.1). Utilizing the MNIST and CIFAR-10 datasets, the study benchmarks FedAF against Federated Averaging (FedAVG) in terms of accuracy, convergence speed, communication efficiency, and robustness to label and feature skews.  

Traditional federated learning approaches like FedAVG aggregate locally trained models at a central server to form a global model. However, these methods often encounter challenges such as client drift in heterogeneous data environments, which can adversely affect model accuracy and convergence rates. FedAF introduces an innovative aggregation-free strategy wherein clients collaboratively generate a compact set of condensed synthetic data. This data, augmented by soft labels from the clients, is transmitted to the server, which then uses it to train the global model. This approach effectively reduces client drift and enhances resilience to data heterogeneity. Additionally, by compressing the representation of real data into condensed synthetic data, FedAF improves privacy by minimizing the transfer of raw data.  

The experimental results indicate that while FedAF converges faster, it struggles to stabilize under highly heterogenous environments due to limited real data representation capacity of condensed synthetic data. 


Mohammed Misbah Zarrar

Efficient End-to-End Deep Learning for Autonomous Racing: TinyLidarNet and Low-Power Computing Platforms

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Thesis Defense

Committee Members:

Heechul Yun, Chair
Prasad Kulkarni



Abstract

Chapter 1 introduces TinyML, emphasizing the shift from large-scale machine learning to embedded, resource-constrained devices. It explores DeepPiCar, a project demonstrating the application of TinyML principles to autonomous driving on low-cost platforms. The chapter details the motivation, setup, and fine-tuning process used to improve DeepPiCar's adaptability in changing environments using a Raspberry Pi Zero 2 W. Key findings highlight the feasibility and efficiency of on-device fine-tuning.

Chapter 2 delves into prior research that has demonstrated the effectiveness of end-to-end deep learning for robotic navigation, where the control signals are directly derived from raw sensory data. However, the majority of existing end-to-end navigation solutions are predominantly camera-based. In this chapter, we introduce TinyLidarNet, a lightweight 2D LiDAR-based end-to-end deep learning model for autonomous racing. We systematically analyze its performance on untrained tracks and computing requirements for real-time processing. We find that TinyLidarNet's 1D Convolutional Neural Network (CNN) based architecture significantly outperforms widely used Multi-Layer Perceptron (MLP) based architecture. In addition, we show that it can be processed in real-time on low-end micro-controller units (MCUs).

Chapter 3 comprehensively analyzes the variation of TinyLidarNet, an enhanced deep learning model optimized for F1TENTH autonomous racing using the ESP32S3 microcontroller and RPLiDAR A1 sensor. It is aimed at addressing challenges like size, weight, power efficiency, and environmental adaptability in the F1TENTH autonomous racing competition. Through a combination of expert driving data and the Dataset Aggregation (DAGger) technique, the model was trained to improve navigation accuracy and processing efficiency. Testing demonstrated that the vehicle could complete multiple laps on both familiar and new tracks without collisions while meeting real-time processing requirements.


Ye Wang

Deceptive Signals: Unveiling and Countering Sensor Spoofing Attacks on Cyber Systems

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

PhD Comprehensive Defense

Committee Members:

Fengjun Li, Chair
Drew Davidson
Rongqing Hui
Bo Luo
Haiyang Chao

Abstract

In modern computer systems, sensors play a critical role in enabling a wide range of functionalities, from navigation in autonomous vehicles to environmental monitoring in smart homes. Acting as an interface between physical and digital worlds, sensors collect data to drive automated functionalities and decision-making. However, this reliance on sensor data introduces significant potential vulnerabilities, leading to various physical, sensor-enabled attacks such as spoofing, tampering, and signal injection. Sensor spoofing attacks, where adversaries manipulate sensor input or inject false data into target systems, pose serious risks to system security and privacy.

In this work, we have developed two novel sensor spoofing attack methods that significantly enhance both efficacy and practicality. The first method employs physical signals that are imperceptible to humans but detectable by sensors. Specifically, we target deep learning based facial recognition systems using infrared lasers. By leveraging advanced laser modeling, simulation-guided targeting, and real-time physical adjustments, our infrared laser-based physical adversarial attack achieves high success rates with practical real-time guarantees, surpassing the limitations of prior physical perturbation attacks. The second method embeds physical signals, which are inherently present in the system, into legitimate patterns. In particular, we integrate trigger signals into standard operational patterns of actuators on mobile devices to construct remote logic bombs, which are shown to be able to evade all existing detection mechanisms. Achieving a zero false-trigger rate with high success rates, this novel sensor bomb is highly effective and stealthy.

Our study on emerging sensor-based threats highlights the urgent need for comprehensive defenses against sensor spoofing. Along this direction, we design and investigate two defense strategies to mitigate these threats. The first strategy involves filtering out physical signals identified as potential attack vectors. The second strategy is to leverage beneficial physical signals to obfuscate malicious patterns and reinforce data integrity. For example, side channels targeting the same sensor can be used to introduce cover signals that prevent information leakage, while environment-based physical signals serve as signatures to authenticate data. Together, these strategies form a comprehensive defense framework that filters harmful sensor signals and utilizes beneficial ones, significantly enhancing the overall security of cyber systems.


Jagadeesh Sai Dokku

Intelligent Chat Bot for KU Website: Automated Query Response and Resource Navigation

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Project Defense

Committee Members:

Fengjun Li, Chair
Drew Davidson
Rongqing Hui
Bo Luo
Haiyang Chao

Abstract

In modern computer systems, sensors play a critical role in enabling a wide range of functionalities, from navigation in autonomous vehicles to environmental monitoring in smart homes. Acting as an interface between physical and digital worlds, sensors collect data to drive automated functionalities and decision-making. However, this reliance on sensor data introduces significant potential vulnerabilities, leading to various physical, sensor-enabled attacks such as spoofing, tampering, and signal injection. Sensor spoofing attacks, where adversaries manipulate sensor input or inject false data into target systems, pose serious risks to system security and privacy.

In this work, we have developed two novel sensor spoofing attack methods that significantly enhance both efficacy and practicality. The first method employs physical signals that are imperceptible to humans but detectable by sensors. Specifically, we target deep learning based facial recognition systems using infrared lasers. By leveraging advanced laser modeling, simulation-guided targeting, and real-time physical adjustments, our infrared laser-based physical adversarial attack achieves high success rates with practical real-time guarantees, surpassing the limitations of prior physical perturbation attacks. The second method embeds physical signals, which are inherently present in the system, into legitimate patterns. In particular, we integrate trigger signals into standard operational patterns of actuators on mobile devices to construct remote logic bombs, which are shown to be able to evade all existing detection mechanisms. Achieving a zero false-trigger rate with high success rates, this novel sensor bomb is highly effective and stealthy.

Our study on emerging sensor-based threats highlights the urgent need for comprehensive defenses against sensor spoofing. Along this direction, we design and investigate two defense strategies to mitigate these threats. The first strategy involves filtering out physical signals identified as potential attack vectors. The second strategy is to leverage beneficial physical signals to obfuscate malicious patterns and reinforce data integrity. For example, side channels targeting the same sensor can be used to introduce cover signals that prevent information leakage, while environment-based physical signals serve as signatures to authenticate data. Together, these strategies form a comprehensive defense framework that filters harmful sensor signals and utilizes beneficial ones, significantly enhancing the overall security of cyber systems.


SM Ishraq-Ul Islam

Title: Quantum Circuit Synthesis using Genetic Algorithms Combined with Fuzzy Logic

When & Where:


LEEP2, Room 1420

Degree Type:

MS Thesis Defense

Committee Members:

Esam El-Araby, Chair
Tamzidul Hoque
Prasad Kulkarni


Abstract

Quantum computing emerges as a promising direction for high-performance computing in the post-Moore era. Leveraging quantum mechanical properties, quantum devices can theoretically provide significant speedup over classical computers in certain problem domains. Quantum algorithms are typically expressed as quantum circuits composed of quantum gates, or as unitary matrices. Execution of quantum algorithms on physical devices requires translation to machine-compatible circuits -- a process referred to as quantum compilation or synthesis. 

 Quantum synthesis is a challenging problem. Physical quantum devices support a limited number of native basis gates, requiring synthesized circuits to be composed of only these gates. Moreover, quantum devices typically have specific qubit topologies, which constrain how and where gates can be applied. Consequently, logical qubits in input circuits and unitaries may need to be mapped to and routed between physical qubits on the device.

 Current Noisy Intermediate-Scale Quantum (NISQ) devices present additional constraints, through their gate errors and high susceptibility to noise. NISQ devices are vulnerable to errors during gate application and their short decoherence times leads to qubits rapidly succumbing to accumulated noise and possibly corrupting computations. Therefore, circuits synthesized for NISQ devices need to have a low number of gates to reduce gate errors, and short execution times to avoid qubit decoherence. 

 The problem of synthesizing device-compatible quantum circuits, while optimizing for low gate count and short execution times, can be shown to be computationally intractable using analytical methods. Therefore, interest has grown towards heuristics-based compilation techniques, which are able to produce approximations of the desired algorithm to a required degree of precision. In this work, we investigate using Genetic Algorithms (GAs) -- a proven gradient-free optimization technique based on natural selection -- for circuit synthesis. In particular, we formulate the quantum synthesis problem as a multi-objective optimization (MOO) problem, with the objectives of minimizing the approximation error, number of multi-qubit gates, and circuit depth. We also employ fuzzy logic for runtime parameter adaptation of GA to enhance search efficiency and solution quality of our proposed quantum synthesis method.


Sravan Reddy Chintareddy

Combating Spectrum Crunch with Efficient Machine-Learning Based Spectrum Access and Harnessing High-frequency Bands for Next-G Wireless Networks

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Comprehensive Defense

Committee Members:

Morteza Hashemi, Chair
Victor Frost
Erik Perrins
Dongjie Wang
Shawn Keshmiri

Abstract

There is an increasing trend in the number of wireless devices that is now already over 14 billion and is expected to grow to 40 billion devices by 2030. In addition, we are witnessing an unprecedented proliferation of applications and technologies with wireless connectivity requirements such as unmanned aerial vehicles, connected health, and radars for autonomous vehicles. The advent of new wireless technologies and devices will only worsen the current spectrum crunch that service providers and wireless operators are already experiencing. In this PhD study, we address these challenges through the following research thrusts, in which we consider two emerging applications aimed at advancing spectrum efficiency and high-frequency connectivity solutions.

First, we focus on effectively utilizing the existing spectrum resources for emerging applications such as networked UAVs operating within the Unmanned Traffic Management (UTM) system. In this thrust, we develop a coexistence framework for UAVs to share spectrum with traditional cellular networks by using machine learning (ML) techniques so that networked UAVs act as secondary users without interfering with primary users. We propose federated learning (FL) and reinforcement learning (RL) solutions to establish a collaborative spectrum sensing and dynamic spectrum allocation framework for networked UAVs. In the second part, we explore the potential of millimeter-wave (mmWave) and terahertz (THz) frequency bands for high-speed data transmission in urban settings. Specifically, we investigate THz-based midhaul links for 5G networks, where a network's central units (CUs) connect to distributed units (DUs). Through numerical analysis, we assess the feasibility of using 140 GHz links and demonstrate the merits of high-frequency bands to support high data rates in midhaul networks for future urban communications infrastructure. Overall, this research is aimed at establishing frameworks and methodologies that contribute toward the sustainable growth and evolution of wireless connectivity.


Arnab Mukherjee

Attention-Based Solutions for Occlusion Challenges in Person Tracking

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Comprehensive Defense

Committee Members:

Prasad Kulkami, Chair
Sumaiya Shomaji
Hongyang Sun
Jian Li

Abstract

Person tracking and association is a complex task in computer vision applications. Even with a powerful detector, a highly accurate association algorithm is necessary to match and track the correct person across all frames. This method has numerous applications in surveillance, and its complexity increases with the number of detected objects and their movements across frames. A significant challenge in person tracking is occlusion, which occurs when an individual being tracked is partially or fully blocked by another object or person. This can make it difficult for the tracking system to maintain the identity of the individual and track them effectively.

In this research, we propose a solution to the occlusion problem by utilizing an occlusion-aware spatial attention transformer. We have divided the entire tracking association process into two scenarios: occlusion and no-occlusion. When a detected person with a specific ID suddenly disappears from a frame for a certain period, we employ advanced methods such as Detector Integration and Pose Estimation to ensure the correct association. Additionally, we implement a spatial attention transformer to differentiate these occluded detections, transform them, and then match them with the correct individual using the Cosine Similarity Metric.

The features extracted from the attention transformer provide a robust baseline for detecting people, enhancing the algorithms adaptability and addressing key challenges associated with existing approaches. This improved method reduces the number of misidentifications and instances of ID switching while also enhancing tracking accuracy and precision.


Agraj Magotra

Data-Driven Insights into Sustainability: An Artificial Intelligence (AI) Powered Analysis of ESG Practices in the Textile and Apparel Industry

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

Sumaiya Shomaji, Chair
Prasad Kulkarni
Zijun Yao


Abstract

The global textile and apparel (T&A) industry is under growing scrutiny for its substantial environmental and social impact, producing 92 million tons of waste annually and contributing to 20% of global water pollution. In Bangladesh, one of the world's largest apparel exporters, the integration of Environmental, Social, and Governance (ESG) practices is critical to meet international sustainability standards and maintain global competitiveness. This master's study leverages Artificial Intelligence (AI) and Machine Learning (ML) methodologies to comprehensively analyze unstructured corporate data related to ESG practices among LEED-certified Bangladeshi T&A factories.

Our study employs advanced techniques, including Web Scraping, Natural Language Processing (NLP), and Topic Modeling, to extract and analyze sustainability-related information from factory websites. We develop a robust ML framework that utilizes Non-Negative Matrix Factorization (NMF) for topic extraction and a Random Forest classifier for ESG category prediction, achieving an 86% classification accuracy. The study uncovers four key ESG themes: Environmental Sustainability, Social : Workplace Safety and Compliance, Social: Education and Community Programs, and Governance. The analysis reveals that 46% of factories prioritize environmental initiatives, such as energy conservation and waste management, while 44% emphasize social aspects, including workplace safety and education. Governance practices are significantly underrepresented, with only 10% of companies addressing ethical governance, healthcare provisions and employee welfare.

To deepen our understanding of the ESG themes, we conducted a Centrality Analysis to identify the most influential keywords within each category, using measures such as degree, closeness, and eigenvector centrality. Furthermore, our analysis reveals that higher certification levels, like Platinum, are associated with a more balanced emphasis on environmental, social, and governance practices, while lower levels focus primarily on environmental efforts. These insights highlight key areas where the industry can improve and inform targeted strategies for enhancing ESG practices. Overall, this ML framework provides a data-driven, scalable approach for analyzing unstructured corporate data and promoting sustainability in Bangladesh’s T&A sector, offering actionable recommendations for industry stakeholders, policymakers, and global brands committed to responsible sourcing.


Samyoga Bhattarai

Pro-ID: A Secure Face Recognition System using Locality Sensitive Hashing to Protect Human ID

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Hongyang Sun


Abstract

Face recognition systems are widely used in various applications, from mobile banking apps to personal smartphones. However, these systems often store biometric templates in raw form, posing significant security and privacy risks. Pro-ID addresses this vulnerability by incorporating SimHash, an algorithm of Locality Sensitive Hashing (LSH), to create secure and irreversible hash codes of facial feature vectors. Unlike traditional methods that leave raw data exposed to potential breaches, SimHash transforms the feature space into high-dimensional hash codes, safeguarding user identity while preserving system functionality. 

The proposed system creates a balance between two aspects: security and the system’s performance. Additionally, the system is designed to resist common attacks, including brute force and template inversion, ensuring that even if the hashed templates are exposed, the original biometric data cannot be reconstructed.  

A key challenge addressed in this project is minimizing the trade-off between security and performance. Extensive evaluations demonstrate that the proposed method maintains competitive accuracy rates comparable to traditional face recognition systems while significantly enhancing security metrics such as irreversibility, unlinkability, and revocability. This innovative approach contributes to advancing the reliability and trustworthiness of biometric systems, providing a secure framework for applications in face recognition systems.