I2S Masters/ Doctoral Theses


All students and faculty are welcome to attend the final defense of I2S graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Shailesh Pandey

Vision-Based Motor Assessment in Autism: Deep Learning Methods for Detection, Classification, and Tracking

When & Where:


Zoom Meeting: https://kansas.zoom.us/j/87952337768 Meeting ID: 879 5233 7768 Passcode: 965792

Degree Type:

PhD Comprehensive Defense

Committee Members:

Sumaiya Shomaji, Chair
Shima Fardad
Zijun Yao
Cuncong Zhong
Lisa Dieker

Abstract

Motor difficulties show up in as many as 90% of people with autism, but surprisingly few, somewhere between 13% and 32%, ever get motor-focused help. A big part of the problem is that the tools we have for measuring motor skills either rely on a clinician's subjective judgment or require expensive lab equipment that most families will never have access to. This dissertation tries to close that gap with three projects, all built around the idea that a regular webcam and some well-designed deep learning models can do much of what costly motion-capture labs do today.

The first project asks a straightforward question: can a computer tell the difference between how someone with autism moves and how a typically developing person moves, just by watching a short video? The answer, it turns out, is yes. We built an ensemble of three neural networks, each one tuned to notice something different. One focuses on how joints coordinate with each other spatially, other zeroes in on the timing of movements, and the third learns which body-part relationships matter most for a given clip. We tested the system on 582 videos from 118 people (69 with ASD and 49 without) performing simple everyday actions like stirring or hammering. The ensemble correctly classifies 95.65% of cases. The timing-focused model on its own hits 92%, which is nearly 10 points better than a standard recurrent network baseline. And when all three models agree, accuracy climbs above 98%.

The second project deals with stimming, the repetitive behaviors like arm flapping, head banging, and spinning that are common in autism. Working with 302 publicly available videos, we trained a skeleton-based model that reaches 91% accuracy using body pose alone. That is more than double the 47% that previous work managed on the same benchmark. When we combine the pose information with what the raw video shows through a late fusion approach, accuracy jumps to 99.9%. Across the entire test set, only a single video was misclassified.

The third project is E-MotionSpec, a web platform designed for clinicians and researchers who want to track motor development over time. It runs in any browser, uses MediaPipe to estimate body pose in real time, and extracts 44 movement features grouped into seven domains covering things like how smoothly someone moves, how quickly they initiate actions, and how coordinated their limbs are. We validated the platform on the same 118-participant dataset and found 36 features with statistically significant differences between the ASD and typically developing groups. Smoothness and initiation timing stood out as the strongest discriminators. The platform also includes tools for comparing sessions over time using frequency analysis and dynamic time warping, so a clinician can actually see whether someone's motor patterns are changing across weeks or months.

Taken together, these three projects offer a practical path toward earlier identification and better ongoing monitoring of motor difficulties in autism. Everything runs on a webcam and a web browser. No motion-capture suits, no force plates, no specialized labs. That matters most for the families, schools, and clinics that need these tools the most and can least afford the alternatives.


Past Defense Notices

Dates

Rithvij Pasupuleti

A Machine Learning Framework for Identifying Bioinformatics Tools and Database Names in Scientific Literature

When & Where:


LEEP2, Room 2133

Degree Type:

MS Project Defense

Committee Members:

Cuncong Zhong, Chair
Dongjie Wang
Han Wang
Zijun Yao

Abstract

The absence of a single, comprehensive database or repository cataloging all bioinformatics databases and software creates a significant barrier for researchers aiming to construct computational workflows. These workflows, which often integrate 10–15 specialized tools for tasks such as sequence alignment, variant calling, functional annotation, and data visualization, require researchers to explore diverse scientific literature to identify relevant resources. This process demands substantial expertise to evaluate the suitability of each tool for specific biological analyses, alongside considerable time to understand their applicability, compatibility, and implementation within a cohesive pipeline. The lack of a central, updated source leads to inefficiencies and the risk of using outdated tools, which can affect research quality and reproducibility. Consequently, there is a critical need for an automated, accurate tool to identify bioinformatics databases and software mentions directly from scientific texts, streamlining workflow development and enhancing research productivity. 

 

The bioNerDS system, a prior effort to address this challenge, uses a rule-based named entity recognition (NER) approach, achieving an F1 score of 63% on an evaluation set of 25 articles from BMC Bioinformatics and PLoS Computational Biology. By integrating the same set of features such as context patterns, word characteristics and dictionary matches into a machine learning model, we developed an approach using an XGBoost classifier. This model, carefully tuned to address the extreme class imbalance inherent in NER tasks through synthetic oversampling and refined via systematic hyperparameter optimization to balance precision and recall, excels at capturing complex linguistic patterns and non-linear relationships, ensuring robust generalization. It achieves an F1 score of 82% on the same evaluation set, significantly surpassing the baseline. By combining rule-based precision with machine learning adaptability, this approach enhances accuracy, reduces ambiguities, and provides a robust tool for large-scale bioinformatics resource identification, facilitating efficient workflow construction. Furthermore, this methodology holds potential for extension to other technological domains, enabling similar resource identification in fields like data science, artificial intelligence, or computational engineering.


Vishnu Chowdary Madhavarapu

Automated Weather Classification Using Transfer Learning

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents an automated weather classification system utilizing transfer learning with pre-trained convolutional neural networks (CNNs) such as VGG19, InceptionV3, and ResNet50. Designed to classify weather conditions—sunny, cloudy, rainy, and sunrise—from images, the system addresses the challenge of limited labeled data by applying data augmentation techniques like zoom, shear, and flip, expanding the dataset images. By fine-tuning the final layers of pre-trained models, the solution achieves high accuracy while significantly reducing training time. VGG19 was selected as the baseline model for its simplicity, strong feature extraction capabilities, and widespread applicability in transfer learning scenarios. The system was trained using the Adam optimizer and evaluated on key performance metrics including accuracy, precision, recall, and F1 score. To enhance user accessibility, a Flask-based web interface was developed, allowing real-time image uploads and instant weather classification. The results demonstrate that transfer learning, combined with robust data preprocessing and fine-tuning, can produce a lightweight and accurate weather classification tool. This project contributes toward scalable, real-time weather recognition systems that can integrate into IoT applications, smart agriculture, and environmental monitoring.


Rokunuz Jahan Rudro

Using Machine Learning to Classify Driver Behavior from Psychological Features: An Exploratory Study

When & Where:


Eaton Hall, Room 1A

Degree Type:

MS Thesis Defense

Committee Members:

Sumaiya Shomaji, Chair
David Johnson
Zijun Yao
Alexandra Kondyli

Abstract

Driver inattention and human error are the primary causes of traffic crashes. However, little is known about the relationship between driver aggressiveness and safety. Although several studies that group drivers into different classes based on their driving performance have been conducted, little has been done to explore how behavioral traits are linked to driver behavior. The study aims to link different driver profiles, assessed through psychological evaluations, with their likelihood of engaging in risky driving behaviors, as measured in a driving simulation experiment. By incorporating psychological factors into machine learning algorithms, our models were able to successfully relate self-reported decision-making and personality characteristics with actual driving actions. Our results hold promise toward refining existing models of driver behavior by understanding the psychological and behavioral characteristics that influence the risk of crashes.


Md Mashfiq Rizvee

Energy Optimization in Multitask Neural Networks through Layer Sharing

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Thesis Defense

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Han Wang


Abstract

Artificial Intelligence (AI) is being widely used in diverse domains such as industrial automation, traffic control, precision agriculture, and smart cities for major heavy lifting in terms of data analysis and decision making. However, the AI life- cycle is a major source of greenhouse gas (GHG) emission leading to devastating environmental impact. This is due to expensive neural architecture searches, training of countless number of models per day across the world, in-field AI processing of data in billions of edge devices, and advanced security measures across the AI life cycle. Modern applications often involve multitasking, which involves performing a variety of analyzes on the same dataset. These tasks are usually executed on resource-limited edge devices, necessitating AI models that exhibit efficiency across various measures such as power consumption, frame rate, and model size. To address these challenges, we introduce a novel neural network architecture model that incorporates a layer sharing principle to optimize the power usage. We propose a novel neural architecture, Layer Shared Neural Networks that merges multiple similar AI/NN tasks together (with shared layers) towards creating a single AI/NN model with reduced energy requirements and carbon footprint. The experimental findings reveal competitive accuracy and reduced power consumption. The layer shared model significantly reduces power consumption by 50% during training and 59.10% during inference causing as much as an 84.64% and 87.10% decrease in CO2 emissions respectively. 

  


Fairuz Shadmani Shishir

Parameter-Efficient Computational Drug Discovery using Deep Learning

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Thesis Defense

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Hongyang Sun


Abstract

The accurate prediction of small molecule binding affinity and toxicity remains a central challenge in drug discovery, with significant implications for reducing development costs, improving candidate prioritization, and enhancing safety profiles. Traditional computational approaches, such as molecular docking and quantitative structure-activity relationship (QSAR) models, often rely on handcrafted features and require extensive domain knowledge, which can limit scalability and generalization to novel chemical scaffolds. Recent advances in language models (LMs), particularly those adapted to chemical representations such as SMILES (Simplified Molecular Input Line Entry System), have opened new ways for learning data-driven molecular representations that capture complex structural and functional properties. However, achieving both high binding affinity and low toxicity through a resource-efficient computational pipeline is inherently difficult due to the multi-objective nature of the task. This study presents a novel dual-paradigm approach to critical challenges in drug discovery: predicting small molecules with high binding affinity and low cardiotoxicity profiles. For binding affinity prediction, we implement a specialized graph neural network (GNN) architecture that operates directly on molecular structures represented as graphs, where atoms serve as nodes and bonds as edges. This topology-aware approach enables the model to capture complex spatial arrangements and electronic interactions critical for protein-ligand binding. For toxicity prediction, we leverage chemical language models (CLMs) fine-tuned with Low-Rank Adaptation (LoRA), allowing efficient adaptation of large pre-trained models to specialized toxicological endpoints while maintaining the generalized chemical knowledge embedded in the base model. Our hybrid methodology demonstrates significant improvements over existing computational approaches, with the GNN component achieving an average area under the ROC curve (AUROC) of 0.92 on three protein targets and the LoRA-adapted CLM reaching (AUROC) of 0.90 with 60% reduction in parameter usage in predicting cardiotoxicity. This work establishes a powerful computational framework that accelerates drug discovery by enabling both higher binding affinity and low toxicity compounds with optimized efficacy and safety profiles. 


Soma Pal

Truths about compiler optimization for state-of-the-art (SOTA) C/C++ compilers

When & Where:


Eaton Hall, Room 2001B

Degree Type:

PhD Comprehensive Defense

Committee Members:

Prasad Kulkami, Chair
Esam El-Araby
Drew Davidson
Tamzidul Hoque
Jian Yunfeng

Abstract

Compiler optimizations are critical for performance and have been extensively studied, especially for C/C++ language compilers. Our overall goal in this thesis is to investigate and compare the properties and behavior of optimization passes across multiple contemporary, state-of-the-art (SOTA)  C/C++ compilers to understand if they adopt similar optimization implementation and orchestration strategies. Given the maturity of pre-existing knowledge in the field, it seems conceivable that different compiler teams will adopt consistent optimization passes, pipeline and application techniques. However, our preliminary results indicate that such expectation may be misguided. If so, then we will attempt to understand the differences, and study and quantify their impact on the performance of generated code.

In our first work, we study and compare the behavior of profile-guided optimizations (PGO) in two popular SOTA C/C++ compilers, GCC and Clang. This study reveals many interesting, and several counter-intuitive, properties about PGOs in C/C++ compilers. The behavior and benefits of PGOs also vary significantly across our selected compilers. We present our observations, along with plans to further explore these inconsistencies in this report. Likewise, we have also measured noticeable differences in the performance delivered by optimizations across our compilers. We propose to explore and understand these differences in this work. We present further details regarding our proposed directions and planned experiments in this report. We hope that this work will show and suggest opportunities for compilers to learn from each other and motivate researchers to find mechanisms to combine the benefits of multiple compilers to deliver higher overall program performance.


Nyamtulla Shaik

AI Vision to Care: A QuadView of Deep Learning for Detecting Harmful Stimming in Autism

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Thesis Defense

Committee Members:

Sumaiya Shomaji, Chair
Bo Luo
Dongjie Wang


Abstract

Stimming refers to repetitive actions or behaviors used to regulate sensory input or express feelings. Children with developmental disorders like autism (ASD) frequently perform stimming. This includes arm flapping, head banging, finger flicking, spinning, etc. This is exhibited by 80-90% of children with Autism, which is seen in 1 among 36 children in the US. Head banging is one of these self-stimulatory habits that can be harmful. If these behaviors are automatically identified and notified using live video monitoring, parents and other caregivers can better watch over and assist children with ASD.

Classifying these actions is important to recognize harmful stimming, so this study focuses on developing a deep learning-based approach for stimming action recognition. We implemented and evaluated four models leveraging three deep learning architectures based on Convolutional Neural Networks (CNNs), Autoencoders, and Vision Transformers. For the first time in this area, we use skeletal joints extracted from video sequences. Previous works relied solely on raw RGB videos, vulnerable to lighting and environmental changes. This research explores Deep Learning based skeletal action recognition and data processing techniques for a small unstructured dataset that consists of 89 home recorded videos collected from publicly available sources like YouTube. Our robust data cleaning and pre-processing techniques helped the integration of skeletal data in stimming action recognition, which performed better than state-of-the-art with a classification accuracy of up to 87%.

In addition to using traditional deep learning models like CNNs for action recognition, this study is among the first to apply data-hungry models like Vision Transformers (ViTs) and Autoencoders for stimming action recognition on the dataset. The results prove that using skeletal data reduces the processing time and significantly improves action recognition, promising a real-time approach for video monitoring applications. This research advances the development of automated systems that can assist caregivers in more efficiently tracking stimming activities.
 


Alexander Rodolfo Lara

Creating a Faradaic Efficiency Graph Dataset Using Machine Learning

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

Zijun Yao, Chair
Sumaiya Shomaji
Kevin Leonard


Abstract

Just as the internet-of-things leverages machine learning over a vast amount of data produced by an innumerable number of sensors, the Internet of Catalysis program uses similar strategies with catalysis research. One application of the Internet of Catalysis strategy is treating research papers as datapoints, rich with text, figures, and tables. Prior research within the program focused on machine learning models applied strictly over text.This project is the first step of the program in creating a machine learning model from the images of catalysis research papers. Specifically, this project creates a dataset of faradaic efficiency graphs using transfer learning from pretrained models. The project utilizes FasterRCNN_ResNet50_FPN, LayoutLMv3SequenceClassification, and computer vision techniques to recognize figures, extract all graphs, then classify the faradaic efficiency graphs.

Downstream of this project, researchers will create a graph reading model to integrate with large language models. This could potentially lead to a multimodal model capable of fully learning from images, tables, and texts of catalysis research papers. Such a model could then guide experimentation on reaction conditions, catalysts, and production.


Amin Shojaei

Scalable and Cooperative Multi-Agent Reinforcement Learning for Networked Cyber-Physical Systems: Applications in Smart Grids

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Dissertation Defense

Committee Members:

Morteza Hashemi, Chair
Alex Bardas
Prasad Kulkarni
Taejoon Kim
Shawn Keshmiri

Abstract

Significant advances in information and networking technologies have transformed Cyber-Physical Systems (CPS) into networked cyber-physical systems (NCPS). A noteworthy example of such systems is smart grid networks, which include distributed energy resources (DERs), renewable generation, and the widespread adoption of Electric Vehicles (EVs). Such complex NCPS require intelligent and autonomous control solutions. For example, the increasing number of EVs introduces significant sources of demand and user behavior uncertainty that can jeopardize grid stability during peak hours. Traditional model-based demand-supply controls fail to accurately model and capture the complex nature of smart grid systems in the presence of different uncertainties and as the system size grows. To address these challenges, data-driven approaches have emerged as an effective solution for informed decision-making, predictive modeling, and adaptive control to enhance the resiliency of NCPS in uncertain environments.

As a powerful data-driven approach, Multi-Agent Reinforcement Learning (MARL) enables agents to learn and adapt in dynamic and uncertain environments. However, MARL techniques introduce complexities related to communication, coordination, and synchronization among agents. In this PhD research, we investigate autonomous control for smart grid decision networks using MARL. First, we examine the issue of imperfect state information, which frequently arises due to the inherent uncertainties and limitations in observing the system state.

Second, we focus on the cooperative behavior of agents in distributed MARL frameworks, particularly under the central training with decentralized execution (CTDE) paradigm. We provide theoretical results and variance analysis for stochastic and deterministic cooperative MARL algorithms, including Multi-Agent Deep Deterministic Policy Gradient (MADDPG), Multi-Agent Proximal Policy Optimization (MAPPO), and Dueling MAPPO. These analyses highlight how coordinated learning can improve system-wide decision-making in uncertain and dynamic environments like EV networks.

Third, we address the scalability challenge in large-scale NCPS by introducing a hierarchical MARL framework based on a cluster-based architecture. This framework organizes agents into coordinated subgroups, improving scalability while preserving local coordination. We conduct a detailed variance analysis of this approach to demonstrate its effectiveness in reducing communication overhead and learning complexity. This analysis establishes a theoretical foundation for scalable and efficient control in large-scale smart grid applications.


Asrith Gudivada

Custom CNN for Object State Classification in Robotic Cooking

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents the development of a custom Convolutional Neural Network (CNN) designed to classify object states—such as sliced, diced, or peeled—in robotic cooking environments. Recognizing fine-grained object states is critical for context-aware manipulation yet remains a challenging task due to the visual similarity between states and the limited availability of cooking-specific datasets. To address these challenges, we built a lightweight, non-pretrained CNN trained on a curated dataset of 11 object states. Starting with a baseline architecture, we progressively enhanced the model using data augmentation, optimized dropout, batch normalization, Inception modules, and residual connections. These improvements led to a performance increase from ~45% to ~52% test accuracy. The final model demonstrates improved generalization and training stability, showcasing the effectiveness of combining classical and advanced deep learning techniques. This work contributes toward real-time state recognition for autonomous robotic cooking systems, with implications for assistive technologies in domestic and elder care settings.