I2S Masters/ Doctoral Theses


All students and faculty are welcome to attend the final defense of I2S graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Vinay Kumar Reddy Budideti

NutriBot: An AI-Powered Personalized Nutrition Recommendation Chatbot Using Rasa

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Victor Frost
Prasad Kulkarni


Abstract

In recent years, the intersection of Artificial Intelligence and healthcare has paved the way for intelligent dietary assistance. NutriBot is an AI-powered chatbot developed using the Rasa framework to deliver personalized nutrition recommendations based on user preferences, diet types, and nutritional goals. This full-stack system integrates Rasa NLU, a Flask backend, the Nutritionix API for real-time food data, and a React.js + Tailwind CSS frontend for seamless interaction. The system is containerized using Docker and deployable on cloud platforms like GCP. 

The chatbot supports multi-turn conversations, slot-filling, and remembers user preferences such as dietary restrictions or nutrient focus (e.g., high protein). Evaluation of the system showed perfect intent and entity recognition accuracy, fast API response times, and user-friendly fallback handling. While NutriBot currently lacks persistent user profiles and multilingual support, it offers a highly accurate, scalable framework for future extensions such as fitness tracker integration, multilingual capabilities, and smart assistant deployment.


Ganesh Nurukurti

Customer Behavior Analytics and Recommendation System for E-Commerce

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

In the era of digital commerce, personalized recommendations are pivotal for enhancing user experience and boosting engagement. This project presents a comprehensive recommendation system integrated into an e-commerce web application, designed using Flask and powered by collaborative filtering via Singular Value Decomposition (SVD). The system intelligently predicts and personalizes product suggestions for users based on implicit feedback such as purchases, cart additions, and search behavior.

 

The foundation of the recommendation engine is built on user-item interaction data, derived from the Brazilian e-commerce Olist dataset. Ratings are simulated using weighted scores for purchases and cart additions, reflecting varying degrees of user intent. These interactions are transformed into a user-product matrix and decomposed using SVD, yielding latent user and product features. The model leverages these latent factors to predict user interest in unseen products, enabling precise and scalable recommendation generation.

 

To further enhance personalization, the system incorporates real-time user activity. Recent search history is stored in an SQLite database and used to prioritize recommendations that align with the user’s current interests. A diversity constraint is also applied to avoid redundancy, limiting the number of recommended products per category.

 

The web application supports robust user authentication, product exploration by category, cart management, and checkout simulations. It features a visually driven interface with dynamic visualizations for product insights and user interactions. The home page adapts to individual preferences, showing tailored product recommendations and enabling users to explore categories and details.

 

In summary, this project demonstrates the practical implementation of a hybrid recommendation strategy combining matrix factorization with contextual user behavior. It showcases the importance of latent factor modeling, data preprocessing, and user-centric design in delivering an intelligent retail experience.


Mahmudul Hasan

Assertion-Based Security Assessment of Hardware IP Protection Methods

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Thesis Defense

Committee Members:

Tamzidul Hoque, Chair
Esam El-Araby
Sumaiya Shomaji


Abstract

Combinational and sequential locking methods are promising solutions for protecting hardware intellectual property (IP) from piracy, reverse engineering, and malicious modifications by locking the functionality of the IP based on a secret key. To improve their security, researchers are developing attack methods to extract the secret key.  

 

While the attacks on combinational locking are mostly inapplicable for sequential designs without access to the scan chain, the limited applicable attacks are generally evaluated against the basic random insertion of key gates. On the other hand, attacks on sequential locking techniques suffer from scalability issues and evaluation of improperly locked designs. Finally, while most attacks provide an approximately correct key, they do not indicate which specific key bits are undetermined. This thesis proposes an oracle-guided attack that applies to both combinational and sequential locking without scan chain access. The attack applies light-weight design modifications that represent the oracle using a finite state machine and applies an assertion-based query of the unlocking key. We have analyzed the effectiveness of our attack against 46 sequential designs locked with various classes of combinational locking including random, strong, logic cone-based, and anti-SAT based. We further evaluated against a sequential locking technique using 46 designs with various key sequence lengths and widths. Finally, we expand our framework to identify undetermined key bits, enabling complementary attacks on the smaller remaining key space.


Masoud Ghazikor

Distributed Optimization and Control Algorithms for UAV Networks in Unlicensed Spectrum Bands

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

MS Thesis Defense

Committee Members:

Morteza Hashemi, Chair
Victor Frost
Prasad Kulkarni


Abstract

UAVs have emerged as a transformative technology for various applications, including emergency services, delivery, and video streaming. Among these, video streaming services in areas with limited physical infrastructure, such as disaster-affected areas, play a crucial role in public safety. UAVs can be rapidly deployed in search and rescue operations to efficiently cover large areas and provide live video feeds, enabling quick decision-making and resource allocation strategies. However, ensuring reliable and robust UAV communication in such scenarios is challenging, particularly in unlicensed spectrum bands, where interference from other nodes is a significant concern. To address this issue, developing a distributed transmission control and video streaming is essential to maintaining a high quality of service, especially for UAV networks that rely on delay-sensitive data. 

In this MSc thesis, we study the problem of distributed transmission control and video streaming optimization for UAVs operating in unlicensed spectrum bands. We develop a cross-layer framework that jointly considers three inter-dependent factors: (i) in-band interference introduced by ground-aerial nodes at the physical layer, (ii) limited-size queues with delay-constrained packet arrival at the MAC layer, and (iii) video encoding rate at the application layer. This framework is designed to optimize the average throughput and PSNR by adjusting fading thresholds and video encoding rates for an integrated aerial-ground network in unlicensed spectrum bands. Using consensus-based distributed algorithm and coordinate descent optimization, we develop two algorithms: (i) Distributed Transmission Control (DTC) that dynamically adjusts fading thresholds to maximize the average throughput by mitigating trade-offs between low-SINR transmission errors and queue packet losses, and (ii) Joint Distributed Video Transmission and Encoder Control (JDVT-EC) that optimally balances packet loss probabilities and video distortions by jointly adjusting fading thresholds and video encoding rates. Through extensive numerical analysis, we demonstrate the efficacy of the proposed algorithms under various scenarios.


Srijanya Chetikaneni

Plant Disease Prediction Using Transfer Learning

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

Timely detection of plant diseases is critical to safeguarding crop yields and ensuring global food security. This project presents a deep learning-based image classification system to identify plant diseases using the publicly available PlantVillage dataset. The core objective was to evaluate and compare the performance of a custom-built Convolutional Neural Network (CNN) with two widely used transfer learning models—EfficientNetB0 and MobileNetV3Small. 

 

All models were trained on augmented image data resized to 224×224 pixels, with preprocessing tailored to each architecture. The custom CNN used simple normalization, whereas EfficientNetB0 and MobileNetV3Small utilized their respective pre-processing methods to standardize the pretrained ImageNet domain inputs. To improve robustness, the training pipeline included data augmentation, class weighting, and early stopping.

Training was conducted using the Adam optimizer and categorical cross-entropy loss over 30 epochs, with performance assessed using accuracy, loss, and training time metrics. The results revealed that transfer learning models significantly outperformed the custom CNN. EfficientNetB0 achieved the highest accuracy, making it ideal for high-precision applications, while MobileNetV3Small offered a favorable balance between speed and accuracy, making it suitable for lightweight, real-time inference on edge devices.

This study validates the effectiveness of transfer learning for plant disease detection tasks and emphasizes the importance of model-specific preprocessing and training strategies. It provides a foundation for deploying intelligent plant health monitoring systems in practical agricultural environments.

 


Rahul Purswani

Finetuning Llama on custom data for QA tasks

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Drew Davidson
Prasad Kulkarni


Abstract

Fine-tuning large language models (LLMs) for domain-specific use cases, such as question answering, offers valuable insights into how their performance can be tailored to specialized information needs. In this project, we focused on the University of Kansas (KU) as our target domain. We began by scraping structured and unstructured content from official KU webpages, covering a wide array of student-facing topics including campus resources, academic policies, and support services. From this content, we generated a diverse set of question-answer pairs to form a high-quality training dataset. LLaMA 3.2 was then fine-tuned on this dataset to improve its ability to answer KU-specific queries with greater relevance and accuracy. Our evaluation revealed mixed results—while the fine-tuned model outperformed the base model on most domain-specific questions, the original model still had an edge in handling ambiguous or out-of-scope prompts. These findings highlight the strengths and limitations of domain-specific fine-tuning, and provide practical takeaways for customizing LLMs for real-world QA applications.


Ahmet Soyyigit

Anytime Computing Techniques for LiDAR-based Perception In Cyber-Physical Systems

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

PhD Dissertation Defense

Committee Members:

Heechul Yun, Chair
Michael Branicky
Prasad Kulkarni
Hongyang Sun
Shawn Keshmiri

Abstract

The pursuit of autonomy in cyber-physical systems (CPS) presents a challenging task of real-time interaction with the physical world, prompting extensive research in this domain. Recent advances in artificial intelligence (AI), particularly the introduction of deep neural networks (DNN), have significantly improved the autonomy of CPS, notably by boosting perception capabilities.

CPS perception aims to discern, classify, and track objects of interest in the operational environment, a task that is considerably challenging for computers in a three-dimensional (3D) space. For this task, the use of LiDAR sensors and processing their readings with DNNs has become popular because of their excellent performance. However, in CPS such as self-driving cars and drones, object detection must be not only accurate but also timely, posing a challenge due to the high computational demand of LiDAR object detection DNNs. Satisfying this demand is particularly challenging for on-board computational platforms due to size, weight, and power constraints. Therefore, a trade-off between accuracy and latency must be made to ensure that both requirements are satisfied. Importantly, the required trade-off is operational environment dependent and should be weighted more on accuracy or latency dynamically at runtime. However, LiDAR object detection DNNs cannot dynamically reduce their execution time by compromising accuracy (i.e. anytime computing). Prior research aimed at anytime computing for object detection DNNs using camera images is not applicable to LiDAR-based detection due to architectural differences. This thesis addresses these challenges by proposing three novel techniques: Anytime-LiDAR, which enables early termination with reasonable accuracy; VALO (Versatile Anytime LiDAR Object Detection), which implements deadline-aware input data scheduling; and MURAL (Multi-Resolution Anytime Framework for LiDAR Object Detection), which introduces dynamic resolution scaling. Together, these innovations enable LiDAR-based object detection DNNs to make effective trade-offs between latency and accuracy under varying operational conditions, advancing the practical deployment of LiDAR object detection DNNs.


Rithvij Pasupuleti

A Machine Learning Framework for Identifying Bioinformatics Tools and Database Names in Scientific Literature

When & Where:


LEEP2, Room 2133

Degree Type:

MS Project Defense

Committee Members:

Cuncong Zhong, Chair
Dongjie Wang
Han Wang
Zijun Yao

Abstract

The absence of a single, comprehensive database or repository cataloging all bioinformatics databases and software creates a significant barrier for researchers aiming to construct computational workflows. These workflows, which often integrate 10–15 specialized tools for tasks such as sequence alignment, variant calling, functional annotation, and data visualization, require researchers to explore diverse scientific literature to identify relevant resources. This process demands substantial expertise to evaluate the suitability of each tool for specific biological analyses, alongside considerable time to understand their applicability, compatibility, and implementation within a cohesive pipeline. The lack of a central, updated source leads to inefficiencies and the risk of using outdated tools, which can affect research quality and reproducibility. Consequently, there is a critical need for an automated, accurate tool to identify bioinformatics databases and software mentions directly from scientific texts, streamlining workflow development and enhancing research productivity. 

 

The bioNerDS system, a prior effort to address this challenge, uses a rule-based named entity recognition (NER) approach, achieving an F1 score of 63% on an evaluation set of 25 articles from BMC Bioinformatics and PLoS Computational Biology. By integrating the same set of features such as context patterns, word characteristics and dictionary matches into a machine learning model, we developed an approach using an XGBoost classifier. This model, carefully tuned to address the extreme class imbalance inherent in NER tasks through synthetic oversampling and refined via systematic hyperparameter optimization to balance precision and recall, excels at capturing complex linguistic patterns and non-linear relationships, ensuring robust generalization. It achieves an F1 score of 82% on the same evaluation set, significantly surpassing the baseline. By combining rule-based precision with machine learning adaptability, this approach enhances accuracy, reduces ambiguities, and provides a robust tool for large-scale bioinformatics resource identification, facilitating efficient workflow construction. Furthermore, this methodology holds potential for extension to other technological domains, enabling similar resource identification in fields like data science, artificial intelligence, or computational engineering.


Vishnu Chowdary Madhavarapu

Automated Weather Classification Using Transfer Learning

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents an automated weather classification system utilizing transfer learning with pre-trained convolutional neural networks (CNNs) such as VGG19, InceptionV3, and ResNet50. Designed to classify weather conditions—sunny, cloudy, rainy, and sunrise—from images, the system addresses the challenge of limited labeled data by applying data augmentation techniques like zoom, shear, and flip, expanding the dataset images. By fine-tuning the final layers of pre-trained models, the solution achieves high accuracy while significantly reducing training time. VGG19 was selected as the baseline model for its simplicity, strong feature extraction capabilities, and widespread applicability in transfer learning scenarios. The system was trained using the Adam optimizer and evaluated on key performance metrics including accuracy, precision, recall, and F1 score. To enhance user accessibility, a Flask-based web interface was developed, allowing real-time image uploads and instant weather classification. The results demonstrate that transfer learning, combined with robust data preprocessing and fine-tuning, can produce a lightweight and accurate weather classification tool. This project contributes toward scalable, real-time weather recognition systems that can integrate into IoT applications, smart agriculture, and environmental monitoring.


Past Defense Notices

Dates

Ethan Grantz

Swarm: A Backend-Agnostic Language for Simple Distributed Programming

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Project Defense

Committee Members:

Drew Davidson, Chair
Perry Alexander
Prasad Kulkarni


Abstract

Writing algorithms for a parallel or distributed environment has always been plagued with a variety of challenges, from supervising synchronous reads and writes, to managing job queues and avoiding deadlock. While many languages have libraries or language constructs to mitigate these obstacles, very few attempt to remove those challenges entirely, and even fewer do so while divorcing the means of handling those problems from the means of parallelization or distribution. This project introduces a language called Swarm, which attempts to do just that.

Swarm is a first-class parallel/distributed programming language with modular, swappable parallel drivers. It is intended for everything from multi-threaded local computation on a single machine to large scientific computations split across many nodes in a cluster.

Swarm contains next to no explicit syntax for typical parallel logic, only containing keywords for declaring which variables should reside in shared memory, and describing what code should be parallelized. The remainder of the logic (such as waiting for the results from distributed jobs or locking shared accesses) are added in when compiling to a custom bytecode called Swarm Virtual Instructions (SVI). SVI is then executed by a virtual machine whose parallelization logic is abstracted out, such that the same SVI bytecode can be executed in any parallel/distributed environment.


Johnson Umeike

Optimizing gem5 Simulator Performance: Profiling Insights and Userspace Networking Enhancements

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Thesis Defense

Committee Members:

Mohammad Alian, Chair
Prasad Kulkarni
Heechul Yun


Abstract

Full-system simulation of computer systems is critical for capturing the complex interplay between various hardware and software components in future systems. Modeling the network subsystem is indispensable for the fidelity of full-system simulations due to the increasing importance of scale-out systems. Over the last decade, the network software stack has undergone major changes, with userspace networking stacks and data-plane networks rapidly replacing the conventional kernel network stack. Nevertheless, the current state-of-the-art architectural simulator, gem5, still employs kernel networking, which precludes realistic network application scenarios.

First, we perform a comprehensive profiling study to identify and propose architectural optimizations to accelerate a state-of-the-art architectural simulator. We choose gem5 as the representative architectural simulator, run several simulations with various configurations, perform a detailed architectural analysis of the gem5 source code on different server platforms, tune both system and architectural settings for running simulations, and discuss the future opportunities in accelerating gem5 as an important application. Our detailed profiling of gem5 reveals that its performance is extremely sensitive to the size of the L1 cache. Our experimental results show that a RISC-V core with 32KB data and instruction cache improves gem5’s simulation speed by 31%∼61% compared with a baseline core with 8KB L1 caches. Second, this work extends gem5’s networking capabilities by integrating kernel-bypass/user-space networking based on the DPDK framework, significantly enhancing network throughput and reducing latency. By enabling user-space networking, the simulator achieves a substantial 6.3× improvement in network bandwidth compared to traditional Linux software stacks. Our hardware packet generator model (EtherLoadGen) provides up to a 2.1× speedup in simulation time. Additionally, we develop a suite of networking micro-benchmarks for stress testing the host network stack, allowing for efficient evaluation of gem5’s performance. Through detailed experimental analysis, we characterize the performance differences when running the DPDK network stack on both real systems and gem5, highlighting the sensitivity of DPDK performance to various system and microarchitecture parameters.


Adam Sarhage

Design of Multi-Section Coupled Line Coupler

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

Jim Stiles, Chair
Chris Allen
Glenn Prescott


Abstract

Coupled line couplers are used as directional couplers to enable measurement of forward and reverse power in RF transmitters. These measurements provide valuable feedback to the control loops regulating transmitter power output levels. This project seeks to synthesize, simulate, build, and test a broadband, five-stage coupled line coupler with a 20 dB coupling factor. The coupler synthesis is evaluated against ideal coupler components in Keysight ADS.  Fabrication of coupled line couplers is typically accomplished with a stripline topology, but a microstrip topology is additionally evaluated. Measurements from the fabricated coupled line couplers are then compared to the Keysight ADS EM simulations, and some explanations for the differences are provided. Additionally, measurements from a commercially available broadband directional coupler are provided to show what can be accomplished with the right budget.


Mohsen Nayebi Kerdabadi

Contrastive Learning of Temporal Distinctiveness for Survival Analysis in Electronic Health Records

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Project Defense

Committee Members:

Zijun Yao, Chair
Fengjun Li
Cuncong Zhong


Abstract

Survival analysis plays a crucial role in many healthcare decisions, where the risk prediction for the events of interest can support an informative outlook for a patient's medical journey. Given the existence of data censoring, an effective way of survival analysis is to enforce the pairwise temporal concordance between censored and observed data, aiming to utilize the time interval before censoring as partially observed time-to-event labels for supervised learning. Although existing studies mostly employed ranking methods to pursue an ordering objective, contrastive methods which learn a discriminative embedding by having data contrast against each other, have not been explored thoroughly for survival analysis. Therefore, we propose a novel Ontology-aware Temporality-based Contrastive Survival (OTCSurv) analysis framework that utilizes survival durations from both censored and observed data to define temporal distinctiveness and construct negative sample pairs with adjustable hardness for contrastive learning. Specifically, we first use an ontological encoder and a sequential self-attention encoder to represent the longitudinal EHR data with rich contexts. Second, we design a temporal contrastive loss to capture varying survival durations in a supervised setting through a hardness-aware negative sampling mechanism. Last, we incorporate the contrastive task into the time-to-event predictive task with multiple loss components. We conduct extensive experiments using a large EHR dataset to forecast the risk of hospitalized patients who are in danger of developing acute kidney injury (AKI), a critical and urgent medical condition. The effectiveness and explainability of the proposed model are validated through comprehensive quantitative and qualitative studies.


Jarrett Zeliff

An Analysis of Bluetooth Mesh Security Features in the Context of Secure Communications

When & Where:


Eaton Hall, Room 1

Degree Type:

MS Thesis Defense

Committee Members:

Alexadnru Bardas, Chair
Drew Davidson
Fengjun Li


Abstract

Significant developments in communication methods to help support at-risk populations have increased over the last 10 years. We view at-risk populations as a group of people present in environments where the use of infrastructure or electricity, including telecommunications, is censored and/or dangerous. Security features that accompany these communication mechanisms are essential to protect the confidentiality of its user base and the integrity and availability of the communication network.

In this work, we look at the feasibility of using Bluetooth Mesh as a communication network and analyze the security features that are inherent to the protocol. Through this analysis we determine the strengths and weaknesses of Bluetooth Mesh security features when used as a messaging medium for at risk populations and provide improvements to current shortcomings. Our analysis includes looking at the Bluetooth Mesh Networking Security Fundamentals as described by the Bluetooth Sig: Encryption and Authentication, Separation of Concerns, Area isolation, Key Refresh, Message Obfuscation, Replay Attack Protection, Trashcan Attack Protection, and Secure Device Provisioning.  We look at how each security feature is implemented and determine if these implementations are sufficient in protecting the users from various attack vectors. For example, we examined the Blue Mirror attack, a reflection attack during the provisioning process which leads to the compromise of network keys, while also assessing the under-researched key refresh mechanism. We propose a mechanism to address Blue-Mirror-oriented attacks with the goal of creating a more secure provisioning process.  To analyze the key refresh mechanism, we implemented our own full-fledged Bluetooth Mesh network and implemented a key refresh mechanism. Through this we form an assessment of the throughput, range, and impacts of a key refresh in both lab and field environments that demonstrate the suitability of our solution as a secure communication method.


Daniel Johnson

Probability-Aware Selective Protection for Sparse Iterative Solvers

When & Where:


Nichols Hall, Room 246

Degree Type:

MS Thesis Defense

Committee Members:

Hongyang Sun, Chair
Perry Alexander
Zijun Yao


Abstract

With the increasing scale of high-performance computing (HPC) systems, transient bit-flip errors are now more likely than ever, posing a threat to long-running scientific applications. A substantial portion of these applications involve the simulation of partial differential equations (PDEs) modeling physical processes over discretized spatial and temporal domains, with some requiring the solving of sparse linear systems. While these applications are often paired with system-level application-agnostic resilience techniques such as checkpointing and replication, the utilization of these techniques imposes significant overhead. In this work, we present a probability-aware framework that produces low-overhead selective protection schemes for the widely used Preconditioned Conjugate Gradient (PCG) method, whose performance can heavily degrade due to error propagation through the sparse matrix-vector multiplication (SpMV) operation. Through the use of a straightforward mathematical model and an optimized machine learning model, our selective protection schemes incorporate error probability to protect only certain crucial operations. An experimental evaluation using 15 matrices from the SuiteSparse Matrix Collection demonstrates that our protection schemes effectively reduce resilience overheads, often outperforming or matching both baseline and established protection schemes across all error probabilities.


Javaria Ahmad

Discovering Privacy Compliance Issues in IoT Apps and Alexa Skills Using AI and Presenting a Mechanism for Enforcing Privacy Compliance

When & Where:


LEEP2, Room 2425

Degree Type:

PhD Dissertation Defense

Committee Members:

Bo Luo, Chair
Alex Bardas
Tamzidul Hoque
Fengjun Li
Michael Zhuo Wang

Abstract

The growth of IoT and voice assistant (VA) apps poses increasing concerns about sensitive data leaks. While privacy policies are required to describe how these apps use private user data (i.e., data practice), problems such as missing, inaccurate, and inconsistent policies have been repeatedly reported. Therefore, it is important to assess the actual data practice in apps and identify the potential gaps between the actual and declared data usage. We find that app stores lack in regulating the compliance between the app practices and their declaration, so we use AI to discover the compliance issues in these apps to assist the regulators and developers. For VA apps, we also develop a mechanism to enforce the compliance using AI. In this work, we conduct a measurement study using our framework called IoTPrivComp, which applies an automated analysis of IoT apps’ code and privacy policies to identify compliance gaps. We collect 1,489 IoT apps with English privacy policies from the Play Store. IoTPrivComp detects 532 apps with sensitive external data flows, among which 408 (76.7%) apps have undisclosed data leaks. Moreover, 63.4% of the data flows that involve health and wellness data are inconsistent with the practices disclosed in the apps’ privacy policies. Next, we focus on the compliance issues in skills. VAs, such as Amazon Alexa, are integrated with numerous devices in homes and cars to process user requests using apps called skills. With their growing popularity, VAs also pose serious privacy concerns. Sensitive user data captured by VAs may be transmitted to third-party skills without users’ consent or knowledge about how their data is processed. Privacy policies are a standard medium to inform the users of the data practices performed by the skills. However, privacy policy compliance verification of such skills is challenging, since the source code is controlled by the skill developers, who can make arbitrary changes to the behaviors of the skill without being audited; hence, conventional defense mechanisms using static/dynamic code analysis can be easily escaped. We present Eunomia, the first real-time privacy compliance firewall for Alexa Skills. As the skills interact with the users, Eunomia monitors their actions by hijacking and examining the communications from the skills to the users, and validates them against the published privacy policies that are parsed using a BERT-based policy analysis module. When non-compliant skill behaviors are detected, Eunomia stops the interaction and warns the user. We evaluate Eunomia with 55,898 skills on Amazon skills store to demonstrate its effectiveness and to provide a privacy compliance landscape of Alexa skills.


Xiangyu Chen

Toward Efficient Deep Learning for Computer Vision Applications

When & Where:


Nichols Hall, Room 246

Degree Type:

PhD Dissertation Defense

Committee Members:

Cuncong Zhong, Chair
Prasad Kulkarni
Bo Luo
Fengjun Li
Honguo Xu

Abstract

Deep learning leads the performance in many areas of computer vision. However, after a decade of research, it tends to require larger datasets and more complex models, leading to heightened resource consumption across all fronts. Regrettably, meeting these requirements proves challenging in many real-life scenarios. First, both data collection and labeling processes entail substantial labor and time investments. This challenge becomes especially pronounced in domains such as medicine, where identifying rare diseases demands meticulous data curation. Secondly, the large size of state-of-the-art models, such as ViT, Stable Diffusion, and ConvNext, hinders their deployment on resource-constrained platforms like mobile devices. Research indicates pervasive redundancies within current neural network structures, exacerbating the issue. Lastly, even with ample datasets and optimized models, the time required for training and inference remains prohibitive in certain contexts. Consequently, there is a burgeoning interest among researchers in exploring avenues for efficient artificial intelligence.

This study endeavors to delve into various facets of efficiency within computer vision, including data efficiency, model efficiency, as well as training and inference efficiency. The data efficiency is improved from the perspective of increasing information brought by given image inputs and reducing redundancies of RGB image formats. To achieve this, we propose to integrate both spatial and frequency representations to finetune the classifier. Additionally, we propose explicitly increasing the input information density in the frequency domain by deleting unimportant frequency channels. For model efficiency, we scrutinize the redundancies present in widely used vision transformers. Our investigation reveals that trivial attention in their attention modules covers useful non-trivial attention due to its large amount. We propose mitigating the impact of accumulated trivial attention weights. To increase training efficiency, we propose SuperLoRA, a generation of LoRA adapter, to fine-tune pretrained models with few iterations and extremely-low parameters. Finally, a model simplification pipeline is proposed to further reduce inference time on mobile devices. By addressing these challenges, we aim to advance the practicality and performance of computer vision systems in real-world applications.


Kaidong Li

Accurate and Robust Object Detection and Classification Based on Deep Neural

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Degree Type:

PhD Dissertation Defense

Committee Members:

Cuncong Zhong, Chair
Taejoon Kim
Fengjun Li
Bo Luo
Haiyang Chao

Abstract

Recent years have seen tremendous developments in the field of computer vision and its extensive applications. The fundamental task, image classification, benefiting from deep convolutional neural networks (CNN)'s extraordinary ability to extract deep semantic information from input data, has become the backbone for many other computer vision tasks, like object detection and segmentation. A modern detection usually has bounding-box regression and class prediction with a pre-trained classification model as the backbone. The architecture is proven to produce good results, however, improvements can be made with closer inspections. A detector takes a pre-trained CNN from the classification task and selects the final bounding boxes from multiple proposed regional candidates by a process called non-maximum suppression (NMS), which picks the best candidates by ranking their classification confidence scores. The localization evaluation is absent in the entire process. Another issue is the classification uses one-hot encoding to label the ground truth, resulting in an equal penalty for misclassifications between any two classes without considering the inherent relations between the classes. Ultimately, the realms of 2D image classification and 3D point cloud classification represent distinct avenues of research, each relying on significantly different architectures. Given the unique characteristics of these data types, it is not feasible to employ models interchangeably between them.

My research aims to address the following issues. (1) We proposed the first location-aware detection framework for single-shot detectors that can be integrated into any single-shot detectors. It boosts detection performance by calibrating the ranking process in NMS with localization scores. (2) To more effectively back-propagate gradients, we designed a super-class guided architecture that consists of a superclass branch (SCB) and a finer class branch (FCB). To further increase the effectiveness, the features from SCB with high-level information are fed to FCB to guide finer class predictions. (3) Recent works have shown 3D point cloud models are extremely vulnerable under adversarial attacks, which poses a serious threat to many critical applications like autonomous driving and robotic controls. To gap the domain difference in 3D and 2D classification and to increase the robustness of CNN models on 3D point cloud models, we propose a family of robust structured declarative classifiers for point cloud classification. We experimented with various 3D-to-2D mapping algorithm, bridging the gap between 2D and 3D classification. Furthermore, we empirically validate the internal constrained optimization mechanism effectively defend adversarial attacks through implicit gradients.


Grace Young

Quantum Polynomial-Time Reduction for the Dihedral Hidden Subgroup Problem

When & Where:


Nichols Hall, Room 246

Degree Type:

PhD Dissertation Defense

Committee Members:

Perry Alexander, Chair
Esam El-Araby
Matthew Moore
Cuncong Zhong
KC Kong

Abstract

The last century has seen incredible growth in the field of quantum computing. Quantum computation offers the opportunity to find efficient solutions to certain computational problems which are intractable on classical computers. One class of problems that seems to benefit from quantum computing is the Hidden Subgroup Problem (HSP). The HSP includes, as special cases, the problems of integer factoring, discrete logarithm, shortest vector, and subset sum - making the HSP incredibly important in various fields of research.                               

The presented research examines the HSP for Dihedral groups with order 2^n and proves a quantum polynomial-time reduction to the so-called Codomain Fiber Intersection Problem (CFIP). The usual approach to the HSP relies on harmonic analysis in the domain of the problem and the best-known algorithm using this approach is sub-exponential, but still super-polynomial. The algorithm we will present deviates from the usual approach by focusing on the structure encoded in the codomain and uses this structure to direct a “walk” down the subgroup lattice terminating at the hidden subgroup.                               

Though the algorithm presented here is specifically designed for the DHSP, it has potential applications to many other types of the HSP. It is hypothesized that any group with a sufficiently structured subgroup lattice could benefit from the analysis developed here. As this approach diverges from the standard approach to the HSP it could be a promising step in finding an efficient solution to this problem.